Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4 and 
f(n)=f(n-1)-5 then find the value of 
f(4).
Answer:

If f(1)=4 f(1)=4 and f(n)=f(n1)5 f(n)=f(n-1)-5 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=4 f(1)=4 and f(n)=f(n1)5 f(n)=f(n-1)-5 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given f(1)=4f(1) = 4: We are given that f(1)=4f(1) = 4. To find f(4)f(4), we need to apply the recursive formula f(n)=f(n1)5f(n) = f(n-1) - 5 three times, starting with n=2n = 2 and ending with n=4n = 4.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the recursive formula. We know that f(1)=4f(1) = 4, so f(2)=f(1)5=45f(2) = f(1) - 5 = 4 - 5.
  3. Calculate f(2)f(2): Calculating f(2)f(2) gives us f(2)=1f(2) = -1.
  4. Find f(3)f(3): Next, we find f(3)f(3) using the recursive formula. We have f(2)=1f(2) = -1, so f(3)=f(2)5=15f(3) = f(2) - 5 = -1 - 5.
  5. Calculate f(3)f(3): Calculating f(3)f(3) gives us f(3)=6f(3) = -6.
  6. Find f(4)f(4): Finally, we find f(4)f(4) using the recursive formula. We have f(3)=6f(3) = -6, so f(4)=f(3)5=65f(4) = f(3) - 5 = -6 - 5.
  7. Calculate f(4)f(4): Calculating f(4)f(4) gives us f(4)=11f(4) = -11.

More problems from Find the roots of factored polynomials