Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
(-1+3i)^(4) in simplest 
a+bi form.
Answer:

Write (1+3i)4 (-1+3 i)^{4} in simplest a+bi a+b i form.\newlineAnswer:

Full solution

Q. Write (1+3i)4 (-1+3 i)^{4} in simplest a+bi a+b i form.\newlineAnswer:
  1. Calculate First Square: To solve (1+3i)4(-1+3i)^{4}, we will first calculate the square of (1+3i)(-1+3i) and then square the result again to get the fourth power.\newline(-1+3i) \times (-1+3i) = (-1)^2 + 2\times(-1)\times3i + (3i)^2\(\newline= 1 - 6i - 9(i^2)\)\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=16i9(1)= 1 - 6i - 9(-1)\newline=16i+9= 1 - 6i + 9\newline=106i= 10 - 6i
  2. Replace i2i^2 with 1-1: Now we need to square the result (106i)(10 - 6i) to get the fourth power of (1+3i)(-1+3i).
    (106i)×(106i)=1022×10×6i+(6i)2(10 - 6i) \times (10 - 6i) = 10^2 - 2\times10\times6i + (6i)^2
    =100120i+36(i2)= 100 - 120i + 36(i^2)
    Again, we replace i2i^2 with 1-1.
    =100120i+36(1)= 100 - 120i + 36(-1)
    =100120i36= 100 - 120i - 36
    1-100

More problems from Find the roots of factored polynomials