Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
(-1+4i)^(3) in simplest 
a+bi form.
Answer:

Write (1+4i)3 (-1+4 i)^{3} in simplest a+bi a+b i form.\newlineAnswer:

Full solution

Q. Write (1+4i)3 (-1+4 i)^{3} in simplest a+bi a+b i form.\newlineAnswer:
  1. Recognize Complex Number: To solve (1+4i)3(-1+4i)^{3}, we first need to recognize that we are raising a complex number to the third power. We can do this by multiplying the complex number by itself three times.
  2. Square Intermediate Result: First, let's square (1+4i)(-1+4i) to get an intermediate result. We use the formula (a+bi)(a+bi)=a2+2abib2(a+bi)(a+bi) = a^2 + 2abi - b^2 (since i2=1i^2 = -1).\newlineSo, (-1+4i)^2 = (-1)^2 + 2*(-1)*4i + (4i)^2\(\newline= 1 - 8i - 16\) (since i2=1i^2 = -1)\newline= 158i-15 - 8i.
  3. Multiply to Find Result: Now, we need to multiply our result by (1+4i)(-1+4i) again to find (1+4i)3(-1+4i)^3. So, (158i)(1+4i)=(15)(1)+(15)4i+(8i)(1)+(8i)(4i)=1560i+8i32(-15 - 8i)(-1 + 4i) = (-15)\cdot(-1) + (-15)\cdot4i + (-8i)\cdot(-1) + (-8i)\cdot(4i) = 15 - 60i + 8i - 32 (since i2=1i^2 = -1) =1552i32=1752i= 15 - 52i - 32 = -17 - 52i.

More problems from Find the roots of factored polynomials