Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Solve the quadratic equation below. If the solutions are not real, enter NA.

15x^(2)-x-2=0
The field below accepts a list of numbers or formulas separated by semicolons (e.g. 
2;4;6 
x+1;x-1). The order of the list does not matter.
To enter 
sqrta, type 
sqrt(a).

x=

\newlineSolve the quadratic equation below. If the solutions are not real, enter NA.\newline15x2x2=0 15 x^{2}-x-2=0 \newlineThe field below accepts a list of numbers or formulas separated by semicolons (e.g. 2;4;6 2 ; 4 ; 6 x+1;x1) x+1 ; x-1) . The order of the list does not matter.\newlineTo enter a \sqrt{a} , type sqrt(a) \operatorname{sqrt}(\mathrm{a}) .\newlinex= x=

Full solution

Q. \newlineSolve the quadratic equation below. If the solutions are not real, enter NA.\newline15x2x2=0 15 x^{2}-x-2=0 \newlineThe field below accepts a list of numbers or formulas separated by semicolons (e.g. 2;4;6 2 ; 4 ; 6 x+1;x1) x+1 ; x-1) . The order of the list does not matter.\newlineTo enter a \sqrt{a} , type sqrt(a) \operatorname{sqrt}(\mathrm{a}) .\newlinex= x=
  1. Identify coefficients: Identify the coefficients of the quadratic equation 15x2x2=015x^2 - x - 2 = 0. Here, a=15a = 15, b=1b = -1, and c=2c = -2.
  2. Calculate discriminant: Calculate the discriminant using the formula Δ=b24ac\Delta = b^2 - 4ac. For this equation, Δ=(1)2415(2)=1+120=121\Delta = (-1)^2 - 4\cdot 15 \cdot (-2) = 1 + 120 = 121.
  3. Determine roots: Since the discriminant Δ=121\Delta = 121 is positive, there are two real and distinct roots.
  4. Use quadratic formula: Calculate the roots using the quadratic formula, x=b±Δ2ax = \frac{-b \pm \sqrt{\Delta}}{2a}. Substituting the values, x=(1)±1212×15x = \frac{-(-1) \pm \sqrt{121}}{2 \times 15}.
  5. Simplify calculations: Simplify the calculations: x=1±1130x = \frac{1 \pm 11}{30}. So, x=1+1130=1230=0.4x = \frac{1 + 11}{30} = \frac{12}{30} = 0.4 and x=11130=1030=13x = \frac{1 - 11}{30} = \frac{-10}{30} = -\frac{1}{3}.

More problems from Find the roots of factored polynomials