Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Multiply two binomials: special cases
Find the square. Simplify your answer.
\newline
(
t
+
4
)
2
(t + 4)^2
(
t
+
4
)
2
Get tutor help
Find the product. Simplify your answer.
\newline
(
4
f
+
4
)
(
4
f
−
4
)
(4f + 4)(4f - 4)
(
4
f
+
4
)
(
4
f
−
4
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
4
d
+
2
)
(
4
d
−
2
)
(4d + 2)(4d - 2)
(
4
d
+
2
)
(
4
d
−
2
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
g
+
3
)
(
g
−
4
)
(g + 3)(g - 4)
(
g
+
3
)
(
g
−
4
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
4
c
+
2
)
(
3
c
−
2
)
(4c + 2)(3c - 2)
(
4
c
+
2
)
(
3
c
−
2
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
2
j
+
4
)
(
2
j
−
2
)
(2j + 4)(2j - 2)
(
2
j
+
4
)
(
2
j
−
2
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
3
a
+
1
)
(
a
−
1
)
(3a + 1)(a - 1)
(
3
a
+
1
)
(
a
−
1
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
a
+
4
)
(
a
−
4
)
(a + 4)(a - 4)
(
a
+
4
)
(
a
−
4
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
3
m
+
3
)
(
3
m
−
3
)
(3m + 3)(3m - 3)
(
3
m
+
3
)
(
3
m
−
3
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
2
p
+
3
)
(
2
p
−
3
)
(2p + 3)(2p - 3)
(
2
p
+
3
)
(
2
p
−
3
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
2
a
+
2
)
(
2
a
+
3
)
(2a + 2)(2a + 3)
(
2
a
+
2
)
(
2
a
+
3
)
Get tutor help
Find the product. Simplify your answer.
\newline
(
2
h
−
3
)
(
2
h
+
3
)
(2h - 3)(2h + 3)
(
2
h
−
3
)
(
2
h
+
3
)
Get tutor help
Express
(
x
−
9
)
2
(x-9)^{2}
(
x
−
9
)
2
as a trinomial in standard form.
\newline
Answer:
Get tutor help
Express
(
x
−
3
)
2
(x-3)^{2}
(
x
−
3
)
2
as a trinomial in standard form.
\newline
Answer:
Get tutor help
Express
(
x
−
6
)
2
(x-6)^{2}
(
x
−
6
)
2
as a trinomial in standard form.
\newline
Answer:
Get tutor help
Express
(
x
+
1
)
2
(x+1)^{2}
(
x
+
1
)
2
as a trinomial in standard form.
\newline
Answer:
Get tutor help
Find the product. Simplify your answer.
\newline
(
s
+
3
)
(
s
−
3
)
(s+3)(s-3)
(
s
+
3
)
(
s
−
3
)
Get tutor help
Find the square. Simplify your answer.
\newline
(
b
+
4
)
2
(b+4)^2
(
b
+
4
)
2
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
+
x
)
(
2
−
x
)
=
(2+x)(2-x)=
(
2
+
x
)
(
2
−
x
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
2
)
(
x
+
2
)
=
(x+2)(x+2)=
(
x
+
2
)
(
x
+
2
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
x
−
3
)
(
2
x
−
3
)
=
(2x-3)(2x-3)=
(
2
x
−
3
)
(
2
x
−
3
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
−
10
)
(
x
−
10
)
=
(x-10)(x-10)=
(
x
−
10
)
(
x
−
10
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
8
)
(
x
−
8
)
=
(x+8)(x-8)=
(
x
+
8
)
(
x
−
8
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
4
+
x
)
(
4
−
x
)
=
(4+x)(4-x)=
(
4
+
x
)
(
4
−
x
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
3
)
(
x
−
3
)
=
(x+3)(x-3)=
(
x
+
3
)
(
x
−
3
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
x
+
5
)
(
2
x
−
5
)
=
(2x+5)(2x-5)=
(
2
x
+
5
)
(
2
x
−
5
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
+
7
x
)
(
2
−
7
x
)
=
(2+7x)(2-7x)=
(
2
+
7
x
)
(
2
−
7
x
)
=
Get tutor help
Expand.
\newline
If necessary, combine like terms.
\newline
(
3
+
4
x
)
(
3
−
4
x
)
=
(3+4x)(3-4x)=
(
3
+
4
x
)
(
3
−
4
x
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
3
x
+
7
)
(
3
x
−
7
)
=
(3x+7)(3x-7)=
(
3
x
+
7
)
(
3
x
−
7
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
5
)
(
x
−
5
)
=
(x+5)(x-5)=
(
x
+
5
)
(
x
−
5
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
7
+
x
)
(
7
−
x
)
=
(7+x)(7-x)=
(
7
+
x
)
(
7
−
x
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
x
+
3
)
2
=
(2x+3)^{2}=
(
2
x
+
3
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
5
x
+
1
)
(
5
x
−
1
)
=
(5x+1)(5x-1)=
(
5
x
+
1
)
(
5
x
−
1
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
6
)
(
x
+
6
)
=
(x+6)(x+6)=
(
x
+
6
)
(
x
+
6
)
=
Get tutor help
Expand.
\newline
If necessary, combine like terms.
\newline
(
1
+
6
x
)
(
1
−
6
x
)
=
(1+6x)(1-6x)=
(
1
+
6
x
)
(
1
−
6
x
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
5
x
−
6
)
2
=
(5x-6)^2=
(
5
x
−
6
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
−
5
)
2
=
(x-5)^2=
(
x
−
5
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
7
)
2
=
(x+7)^2=
(
x
+
7
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
7
x
−
1
)
2
=
(7x-1)^2=
(
7
x
−
1
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
3
x
+
8
)
2
=
(3x+8)^2=
(
3
x
+
8
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
−
2
)
2
=
(x-2)^2=
(
x
−
2
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
4
x
+
1
)
(
4
x
+
1
)
=
(4x+1)(4x+1)=
(
4
x
+
1
)
(
4
x
+
1
)
=
Get tutor help
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Previous
1
...
3
4