Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(x+8)(x-8)=

Expand. If necessary, combine like terms.\newline(x+8)(x8)=(x+8)(x-8)=

Full solution

Q. Expand. If necessary, combine like terms.\newline(x+8)(x8)=(x+8)(x-8)=
  1. Identify special case: Identify the special case that applies to the given expression.\newlineThe expression (x+8)(x8)(x+8)(x-8) is in the form of (a+b)(ab)(a + b)(a - b).\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify values of a and b: Identify the values of aa and bb.\newlineCompare (x+8)(x8)(x+8)(x-8) with (a+b)(ab)(a + b)(a - b).\newlinea = xx\newlineb = 88
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (x+8)(x8)(x+8)(x-8).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(x+8)(x8)=x282(x + 8)(x - 8) = x^2 - 8^2
  4. Simplify expression: Simplify x282x^2 - 8^2.\newlinex282=x264x^2 - 8^2 = x^2 - 64

More problems from Multiply two binomials: special cases