Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(3x+8)^(2)=

Expand. If necessary, combine like terms.\newline(3x+8)2=(3x+8)^2=

Full solution

Q. Expand. If necessary, combine like terms.\newline(3x+8)2=(3x+8)^2=
  1. Recognize the pattern: Recognize the pattern.\newlineThe expression (3x+8)2(3x+8)^{2} is a square of a binomial.\newlineSpecial case: (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
  2. Identify the values: Identify the values of aa and bb.\newlineIn the expression (3x+8)2(3x+8)^{2}, compare it with (a+b)2(a + b)^2 to find:\newlinea=3xa = 3x\newlineb=8b = 8
  3. Apply the formula: Apply the square of a binomial formula.\newlineUsing the formula (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2, we expand (3x+8)2(3x+8)^{2} as follows:\newline(3x+8)2=(3x)2+2(3x)(8)+(8)2(3x+8)^{2} = (3x)^2 + 2\cdot(3x)\cdot(8) + (8)^2
  4. Perform the calculations: Perform the calculations.\newline(3x)2+2(3x)(8)+(8)2(3x)^2 + 2 \cdot (3x) \cdot (8) + (8)^2\newline= 9x2+23x8+649x^2 + 2 \cdot 3x \cdot 8 + 64\newline= 9x2+48x+649x^2 + 48x + 64

More problems from Multiply two binomials: special cases