Q. Expand. If necessary, combine like terms.(3x+8)2=
Recognize the pattern: Recognize the pattern.The expression (3x+8)2 is a square of a binomial.Special case: (a+b)2=a2+2ab+b2
Identify the values: Identify the values of a and b.In the expression (3x+8)2, compare it with (a+b)2 to find:a=3xb=8
Apply the formula: Apply the square of a binomial formula.Using the formula (a+b)2=a2+2ab+b2, we expand (3x+8)2 as follows:(3x+8)2=(3x)2+2⋅(3x)⋅(8)+(8)2
Perform the calculations: Perform the calculations.(3x)2+2⋅(3x)⋅(8)+(8)2= 9x2+2⋅3x⋅8+64= 9x2+48x+64
More problems from Multiply two binomials: special cases