Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4f+4)(4f4)(4f + 4)(4f - 4)

Full solution

Q. Find the product. Simplify your answer.\newline(4f+4)(4f4)(4f + 4)(4f - 4)
  1. Identify special case: Identify the special case for the product (4f+4)(4f4)(4f + 4)(4f - 4). This product is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares. Special case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (4f+4)(4f4)(4f + 4)(4f - 4) with (a+b)(ab)(a + b)(a - b). a=4fa = 4f b=4b = 4
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (4f+4)(4f4)(4f + 4)(4f - 4).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(4f+4)(4f4)=(4f)2(4)2(4f + 4)(4f - 4) = (4f)^2 - (4)^2
  4. Simplify expression: Simplify (4f)2(4)2.(4f)^2 - (4)^2.(4f)2(4)2=(4f×4f)(4×4)(4f)^2 - (4)^2 = (4f \times 4f) - (4 \times 4)=16f216= 16f^2 - 16

More problems from Multiply two binomials: special cases