Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2p+3)(2p3)(2p + 3)(2p - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(2p+3)(2p3)(2p + 3)(2p - 3)
  1. Identify Special Case: Identify the special case that applies to the given expression.\newlineThe expression (2p+3)(2p3)(2p + 3)(2p - 3) is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares.\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (2p+3)(2p3)(2p + 3)(2p - 3) with (a+b)(ab)(a + b)(a - b). a=2pa = 2p b=3b = 3
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (2p+3)(2p3)(2p + 3)(2p - 3).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(2p+3)(2p3)=(2p)2(3)2(2p + 3)(2p - 3) = (2p)^2 - (3)^2
  4. Simplify Expression: Simplify (2p)2(3)2.(2p)^2 - (3)^2.(2p)2(3)2=(2p×2p)(3×3)(2p)^2 - (3)^2 = (2p \times 2p) - (3 \times 3)=4p29= 4p^2 - 9

More problems from Multiply two binomials: special cases