Q. Expand. If necessary, combine like terms.(2x+3)2=
Recognize the pattern: Recognize the pattern.The expression (2x+3)2 is in the form of (a+b)2, which is a special case of binomial expansion.Special case: (a+b)2=a2+2ab+b2
Identify values of a and b: Identify the values of a and b.In the expression (2x+3)2, compare it with (a+b)2 to find:a = 2xb = 3
Apply binomial square formula: Apply the binomial square formula.Using the formula (a+b)2=a2+2ab+b2, we substitute a and b with 2x and 3, respectively:(2x+3)2=(2x)2+2⋅(2x)⋅(3)+(3)2
Perform the calculations: Perform the calculations.Now we calculate each term:(2x)2=4x22⋅(2x)⋅(3)=12x(3)2=9
Combine the calculated terms: Combine the calculated terms.Combine the terms to get the expanded form:(2x+3)2=4x2+12x+9
More problems from Multiply two binomials: special cases