Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(2x+3)^(2)=

Expand. If necessary, combine like terms.\newline(2x+3)2=(2x+3)^{2}=

Full solution

Q. Expand. If necessary, combine like terms.\newline(2x+3)2=(2x+3)^{2}=
  1. Recognize the pattern: Recognize the pattern.\newlineThe expression (2x+3)2(2x+3)^{2} is in the form of (a+b)2(a+b)^2, which is a special case of binomial expansion.\newlineSpecial case: (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
  2. Identify values of a and b: Identify the values of a and b.\newlineIn the expression (2x+3)2(2x+3)^{2}, compare it with (a+b)2(a+b)^2 to find:\newlinea = 22x\newlineb = 33
  3. Apply binomial square formula: Apply the binomial square formula.\newlineUsing the formula (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2, we substitute aa and bb with 2x2x and 33, respectively:\newline(2x+3)2=(2x)2+2(2x)(3)+(3)2(2x + 3)^2 = (2x)^2 + 2\cdot(2x)\cdot(3) + (3)^2
  4. Perform the calculations: Perform the calculations.\newlineNow we calculate each term:\newline(2x)2=4x2(2x)^2 = 4x^2\newline2(2x)(3)=12x2 \cdot (2x) \cdot (3) = 12x\newline(3)2=9(3)^2 = 9
  5. Combine the calculated terms: Combine the calculated terms.\newlineCombine the terms to get the expanded form:\newline(2x+3)2=4x2+12x+9(2x + 3)^2 = 4x^2 + 12x + 9

More problems from Multiply two binomials: special cases