Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(2+x)(2-x)=

Expand. If necessary, combine like terms.\newline(2+x)(2x)=(2+x)(2-x)=

Full solution

Q. Expand. If necessary, combine like terms.\newline(2+x)(2x)=(2+x)(2-x)=
  1. Identify special case: Identify the special case that applies here.\newlineThe expression (2+x)(2x)(2+x)(2-x) is in the form of (a+b)(ab)(a+b)(a-b).\newlineSpecial case: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (2+x)(2x)(2+x)(2-x) with (a+b)(ab)(a+b)(a-b). a=2a = 2 b=xb = x
  3. Apply difference of squares: Apply the difference of squares to expand (2+x)(2x)(2+x)(2-x).\newline(a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2\newline(2+x)(2x)=22x2(2+x)(2-x) = 2^2 - x^2
  4. Simplify expression: Simplify 22x22^2 - x^2.\newline22x2=4x22^2 - x^2 = 4 - x^2

More problems from Multiply two binomials: special cases