Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2h3)(2h+3)(2h - 3)(2h + 3)

Full solution

Q. Find the product. Simplify your answer.\newline(2h3)(2h+3)(2h - 3)(2h + 3)
  1. Identify Special Case: Identify the special case that applies to this problem.\newlineThe expression (2h3)(2h+3)(2h - 3)(2h + 3) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify aa and bb: Identify the values of aa and bb. Compare (2h3)(2h+3)(2h - 3)(2h + 3) with (ab)(a+b)(a - b)(a + b). a=2ha = 2h b=3b = 3
  3. Apply Difference of Squares: Apply the difference of squares formula to expand (2h3)(2h+3)(2h - 3)(2h + 3).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(2h3)(2h+3)=(2h)2(3)2(2h - 3)(2h + 3) = (2h)^2 - (3)^2
  4. Simplify Expression: Simplify (2h)2(3)2.(2h)^2 - (3)^2.(2h)2(3)2=(2h×2h)(3×3)(2h)^2 - (3)^2 = (2h \times 2h) - (3 \times 3)=4h29= 4h^2 - 9

More problems from Multiply two binomials: special cases