Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(2x+5)(2x-5)=

Expand. If necessary, combine like terms.\newline(2x+5)(2x5)=(2x+5)(2x-5)=

Full solution

Q. Expand. If necessary, combine like terms.\newline(2x+5)(2x5)=(2x+5)(2x-5)=
  1. Recognize the pattern: Recognize the pattern in the expression (2x+5)(2x5)(2x+5)(2x-5).\newlineThis expression is in the form of (a+b)(ab)(a+b)(a-b), which is a difference of squares.\newlineSpecial case: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2
  2. Identify values of a and b: Identify the values of aa and bb. Compare (2x+5)(2x5)(2x+5)(2x-5) with (a+b)(ab)(a+b)(a-b). a=2xa = 2x b=5b = 5
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (2x+5)(2x5)(2x+5)(2x-5).\newline(a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2\newline(2x+5)(2x5)=(2x)2(5)2(2x+5)(2x-5) = (2x)^2 - (5)^2
  4. Simplify the expression: Simplify (2x)2(5)2(2x)^2 - (5)^2.\newline(2x)2(5)2=(2x2x)(55)(2x)^2 - (5)^2 = (2x \cdot 2x) - (5 \cdot 5)\newline=4x225= 4x^2 - 25

More problems from Multiply two binomials: special cases