Q. Expand. If necessary, combine like terms.(2x+5)(2x−5)=
Recognize the pattern: Recognize the pattern in the expression (2x+5)(2x−5).This expression is in the form of (a+b)(a−b), which is a difference of squares.Special case: (a+b)(a−b)=a2−b2
Identify values of a and b: Identify the values of a and b. Compare (2x+5)(2x−5) with (a+b)(a−b). a=2xb=5
Apply difference of squares formula: Apply the difference of squares formula to expand (2x+5)(2x−5).(a+b)(a−b)=a2−b2(2x+5)(2x−5)=(2x)2−(5)2
Simplify the expression: Simplify (2x)2−(5)2.(2x)2−(5)2=(2x⋅2x)−(5⋅5)=4x2−25
More problems from Multiply two binomials: special cases