Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(3m+3)(3m3)(3m + 3)(3m - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(3m+3)(3m3)(3m + 3)(3m - 3)
  1. Identify Special Case: Identify the special case that applies here.\newline(3m+3)(3m3)(3m + 3)(3m - 3) is in the form of (a+b)(ab)(a + b)(a - b).\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (3m+3)(3m3)(3m + 3)(3m - 3) with (a+b)(ab)(a + b)(a - b). a=3ma = 3m b=3b = 3
  3. Apply Difference of Squares: Apply the difference of squares to expand (3m+3)(3m3)(3m + 3)(3m - 3).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(3m+3)(3m3)=(3m)2(3)2(3m + 3)(3m - 3) = (3m)^2 - (3)^2
  4. Simplify Expression: Simplify (3m)2(3)2.(3m)^2 - (3)^2.(3m)2(3)2=(3m×3m)(3×3)(3m)^2 - (3)^2 = (3m \times 3m) - (3 \times 3)=9m29= 9m^2 - 9

More problems from Multiply two binomials: special cases