Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(3x+7)(3x-7)=

Expand. If necessary, combine like terms.\newline(3x+7)(3x7)=(3x+7)(3x-7)=

Full solution

Q. Expand. If necessary, combine like terms.\newline(3x+7)(3x7)=(3x+7)(3x-7)=
  1. Recognize the pattern: Recognize the pattern in the expression (3x+7)(3x7)(3x+7)(3x-7).\newlineThis expression is in the form of (a+b)(ab)(a+b)(a-b), which is a difference of squares.\newlineDifference of squares formula: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2
  2. Identify values of a and b: Identify the values of aa and bb. Compare (3x+7)(3x7)(3x+7)(3x-7) with (a+b)(ab)(a+b)(a-b). a=3xa = 3x b=7b = 7
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (3x+7)(3x7)(3x+7)(3x-7).\newline(a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2\newline(3x+7)(3x7)=(3x)2(7)2(3x+7)(3x-7) = (3x)^2 - (7)^2
  4. Calculate squares of a and b: Calculate the squares of aa and bb.\newline(3x)2=9x2(3x)^2 = 9x^2\newline(7)2=49(7)^2 = 49
  5. Substitute squares back into expanded form: Substitute the squares back into the expanded form.\newline(3x+7)(3x7)=9x249(3x+7)(3x-7) = 9x^2 - 49

More problems from Multiply two binomials: special cases