Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand.
If necessary, combine like terms.

(3+4x)(3-4x)=

Expand.\newlineIf necessary, combine like terms.\newline(3+4x)(34x)=(3+4x)(3-4x)=

Full solution

Q. Expand.\newlineIf necessary, combine like terms.\newline(3+4x)(34x)=(3+4x)(3-4x)=
  1. Identify special case: Identify the special case that applies to the given expression.\newlineThe expression (3+4x)(34x)(3+4x)(3-4x) is in the form of (a+b)(ab)(a+b)(a-b).\newlineSpecial case: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2
  2. Identify values of a and b: Identify the values of aa and bb. Compare (3+4x)(34x)(3+4x)(3-4x) with (a+b)(ab)(a+b)(a-b). a=3a = 3 b=4xb = 4x
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (3+4x)(34x)(3+4x)(3-4x).\newline(a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2\newline(3+4x)(34x)=32(4x)2(3+4x)(3-4x) = 3^2 - (4x)^2
  4. Simplify expression: Simplify 32(4x)23^2 - (4x)^2.\newline32(4x)2=916x23^2 - (4x)^2 = 9 - 16x^2

More problems from Multiply two binomials: special cases