Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(x-2)^(2)=

Expand. If necessary, combine like terms.\newline(x2)2=(x-2)^2=

Full solution

Q. Expand. If necessary, combine like terms.\newline(x2)2=(x-2)^2=
  1. Identify special case: Identify the special case that applies to this problem.\newlineThe expression (x2)2(x-2)^2 is in the form of (ab)2(a - b)^2.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Identify values of a and b: Identify the values of aa and bb. Compare (x2)2(x-2)^2 with (ab)2(a - b)^2. a=xa = x b=2b = 2
  3. Apply binomial formula: Apply the square of a binomial formula to expand (x2)2(x-2)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(x2)2=x22(x)(2)+22(x-2)^2 = x^2 - 2(x)(2) + 2^2
  4. Simplify expression: Simplify x22(x)(2)+22x^2 - 2(x)(2) + 2^2.\newlinex22(x)(2)+22x^2 - 2(x)(2) + 2^2\newline= x2(2×2)x+2×2x^2 - (2 \times 2)x + 2 \times 2\newline= x24x+4x^2 - 4x + 4

More problems from Multiply two binomials: special cases