Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(s+3)(s3)(s+3)(s-3)

Full solution

Q. Find the product. Simplify your answer.\newline(s+3)(s3)(s+3)(s-3)
  1. Identify Special Case: Identify the special case that applies here.\newline(s+3)(s3)(s+3)(s-3) is in the form of (a+b)(ab)(a + b)(a - b).\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of a and b: Identify the values of aa and bb. Compare (s+3)(s3)(s+3)(s-3) with (a+b)(ab)(a + b)(a - b). a=sa = s b=3b = 3
  3. Apply Difference of Squares: Apply the difference of squares to expand (s+3)(s3)(s+3)(s-3).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(s+3)(s3)=s232(s+3)(s-3) = s^2 - 3^2
  4. Simplify Expression: Simplify s232s^2 - 3^2. \newlines232=s29s^2 - 3^2 = s^2 - 9

More problems from Multiply two binomials: special cases