Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(x-5)^(2)=

Expand. If necessary, combine like terms.\newline(x5)2=(x-5)^2=

Full solution

Q. Expand. If necessary, combine like terms.\newline(x5)2=(x-5)^2=
  1. Identify special case: Identify the special case that applies to this problem.\newlineThe expression (x5)2(x-5)^2 is in the form of (ab)2(a - b)^2.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Identify values of a and b: Identify the values of aa and bb.\newlineCompare (x5)2(x-5)^2 with (ab)2(a - b)^2.\newlinea=xa = x\newlineb=5b = 5
  3. Apply binomial formula: Apply the square of a binomial formula to expand (x5)2(x-5)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(x5)2=x22(x)(5)+52(x-5)^2 = x^2 - 2(x)(5) + 5^2
  4. Simplify expression: Simplify x22(x)(5)+52x^2 - 2(x)(5) + 5^2.\newlinex22(x)(5)+52x^2 - 2(x)(5) + 5^2\newline=x2(25)x+25= x^2 - (2 \cdot 5)x + 25\newline=x210x+25= x^2 - 10x + 25

More problems from Multiply two binomials: special cases