Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(4+x)(4-x)=

Expand. If necessary, combine like terms.\newline(4+x)(4x)=(4+x)(4-x)=

Full solution

Q. Expand. If necessary, combine like terms.\newline(4+x)(4x)=(4+x)(4-x)=
  1. Identify special case: Identify the special case that applies here.\newline(4+x)(4x)(4+x)(4-x) is in the form of (a+b)(ab)(a+b)(a-b).\newlineSpecial case: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2
  2. Identify values of a and b: Identify the values of aa and bb.\newlineCompare (4+x)(4x)(4+x)(4-x) with (a+b)(ab)(a+b)(a-b).\newlinea=4a = 4\newlineb=xb = x
  3. Apply difference of squares: Apply the difference of squares to expand (4+x)(4x)(4+x)(4-x).\newline(a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2\newline(4+x)(4x)=42x2(4+x)(4-x) = 4^2 - x^2
  4. Simplify expression: Simplify 42x24^2 - x^2.\newline42x2=16x24^2 - x^2 = 16 - x^2

More problems from Multiply two binomials: special cases