Q. Expand. If necessary, combine like terms.(2x−3)(2x−3)=
Recognize the pattern: Recognize the pattern.The expression (2x−3)(2x−3) is in the form of (a−b)(a−b), which is a special case of the binomial product.Special case: (a−b)(a−b)=a2−2ab+b2
Identify the values of and : Identify the values of and .Compare with (a-b)(a-b).\newlinea = 222x\newlineb = 333
Apply the binomial product formula: Apply the binomial product formula.\newlineUsing the formula (a−b)(a−b)=a2−2ab+b2(a-b)(a-b) = a^2 - 2ab + b^2(a−b)(a−b)=a2−2ab+b2, we expand (2x−3)(2x−3)(2x-3)(2x-3)(2x−3)(2x−3).\newline(2x−3)(2x−3)=(2x)2−2(2x)(3)+(3)2(2x-3)(2x-3) = (2x)^2 - 2(2x)(3) + (3)^2(2x−3)(2x−3)=(2x)2−2(2x)(3)+(3)2
Perform the calculations: Perform the calculations.\newline(2x)2−2(2x)(3)+(3)2(2x)^2 - 2(2x)(3) + (3)^2(2x)2−2(2x)(3)+(3)2\newline=4x2−2(6x)+9= 4x^2 - 2(6x) + 9=4x2−2(6x)+9\newline=4x2−12x+9= 4x^2 - 12x + 9=4x2−12x+9
More problems from Multiply two binomials: special cases