Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(2x-3)(2x-3)=

Expand. If necessary, combine like terms.\newline(2x3)(2x3)=(2x-3)(2x-3)=

Full solution

Q. Expand. If necessary, combine like terms.\newline(2x3)(2x3)=(2x-3)(2x-3)=
  1. Recognize the pattern: Recognize the pattern.\newlineThe expression (2x3)(2x3)(2x-3)(2x-3) is in the form of (ab)(ab)(a-b)(a-b), which is a special case of the binomial product.\newlineSpecial case: (ab)(ab)=a22ab+b2(a-b)(a-b) = a^2 - 2ab + b^2
  2. Identify the values of a and b: Identify the values of a and b.\newlineCompare (22x3-3)(22x3-3) with (a-b)(a-b).\newlinea = 22x\newlineb = 33
  3. Apply the binomial product formula: Apply the binomial product formula.\newlineUsing the formula (ab)(ab)=a22ab+b2(a-b)(a-b) = a^2 - 2ab + b^2, we expand (2x3)(2x3)(2x-3)(2x-3).\newline(2x3)(2x3)=(2x)22(2x)(3)+(3)2(2x-3)(2x-3) = (2x)^2 - 2(2x)(3) + (3)^2
  4. Perform the calculations: Perform the calculations.\newline(2x)22(2x)(3)+(3)2(2x)^2 - 2(2x)(3) + (3)^2\newline=4x22(6x)+9= 4x^2 - 2(6x) + 9\newline=4x212x+9= 4x^2 - 12x + 9

More problems from Multiply two binomials: special cases