Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(7x-1)^(2)=

Expand. If necessary, combine like terms.\newline(7x1)2=(7x-1)^2=

Full solution

Q. Expand. If necessary, combine like terms.\newline(7x1)2=(7x-1)^2=
  1. Identify special case: Identify the special case that applies to this problem.\newline(7x1)2(7x - 1)^2 is in the form of (ab)2(a - b)^2.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Identify values of a and b: Identify the values of aa and bb. Compare (7x1)2(7x - 1)^2 with (ab)2(a - b)^2. a=7xa = 7x b=1b = 1
  3. Apply binomial formula: Apply the square of a binomial formula to expand (7x1)2(7x - 1)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(7x1)2=(7x)22(7x)(1)+12(7x - 1)^2 = (7x)^2 - 2(7x)(1) + 1^2
  4. Simplify the expression: Simplify (7x)22(7x)(1)+12(7x)^2 - 2(7x)(1) + 1^2.\newline(7x)22(7x)(1)+12(7x)^2 - 2(7x)(1) + 1^2\newline= (7x7x)(271)x+11(7x \cdot 7x) - (2 \cdot 7 \cdot 1)x + 1 \cdot 1\newline= 49x214x+149x^2 - 14x + 1

More problems from Multiply two binomials: special cases