Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4d+2)(4d2)(4d + 2)(4d - 2)

Full solution

Q. Find the product. Simplify your answer.\newline(4d+2)(4d2)(4d + 2)(4d - 2)
  1. Identify Pattern: Identify the pattern in the expression (4d+2)(4d2)(4d + 2)(4d - 2). This expression is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares. Special case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (4d+2)(4d2)(4d + 2)(4d - 2) with (a+b)(ab)(a + b)(a - b). a=4da = 4d b=2b = 2
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (4d+2)(4d2)(4d + 2)(4d - 2).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(4d+2)(4d2)=(4d)2(2)2(4d + 2)(4d - 2) = (4d)^2 - (2)^2
  4. Simplify Expression: Simplify (4d)2(2)2.(4d)^2 - (2)^2.(4d)2(2)2=(4d×4d)(2×2)(4d)^2 - (2)^2 = (4d \times 4d) - (2 \times 2)=16d24= 16d^2 - 4

More problems from Multiply two binomials: special cases