Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(5x-6)^(2)=

Expand. If necessary, combine like terms.\newline(5x6)2=(5x-6)^2=

Full solution

Q. Expand. If necessary, combine like terms.\newline(5x6)2=(5x-6)^2=
  1. Recognize the pattern: Recognize the pattern (5x6)2(5x - 6)^2.\newlineThis is in the form of (ab)2(a - b)^2.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Identify values of a and b: Identify the values of a and b.\newlineCompare (55x - 66)^22 with (a - b)^22.\newlinea = 55x\newlineb = 66
  3. Apply binomial formula: Apply the square of a binomial formula to expand (5x6)2(5x - 6)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(5x6)2=(5x)22(5x)(6)+62(5x - 6)^2 = (5x)^2 - 2(5x)(6) + 6^2
  4. Simplify the expression: Simplify (5x)22(5x)(6)+62.(5x)^2 - 2(5x)(6) + 6^2. \newline(5x)22(5x)(6)+62(5x)^2 - 2(5x)(6) + 6^2\newline=(5x5x)(256)x+66= (5x \cdot 5x) - (2 \cdot 5 \cdot 6)x + 6 \cdot 6\newline=25x260x+36= 25x^2 - 60x + 36

More problems from Multiply two binomials: special cases