Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(7+x)(7-x)=

Expand. If necessary, combine like terms.\newline(7+x)(7x)=(7+x)(7-x)=

Full solution

Q. Expand. If necessary, combine like terms.\newline(7+x)(7x)=(7+x)(7-x)=
  1. Identify special case: Identify the special case that applies here.\newline(7+x)(7x)(7+x)(7-x) is in the form of (a+b)(ab)(a + b)(a - b).\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify values of a and b: Identify the values of aa and bb. Compare (7+x)(7x)(7+x)(7-x) with (a+b)(ab)(a + b)(a - b). a=7a = 7 b=xb = x
  3. Apply difference of squares: Apply the difference of squares to expand (7+x)(7x)(7+x)(7-x).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(7+x)(7x)=72x2(7+x)(7-x) = 7^2 - x^2
  4. Simplify expression: Simplify 72x27^2 - x^2.\newline72x2=49x27^2 - x^2 = 49 - x^2

More problems from Multiply two binomials: special cases