Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand. If necessary, combine like terms.

(5x+1)(5x-1)=

Expand. If necessary, combine like terms.\newline(5x+1)(5x1)=(5x+1)(5x-1)=

Full solution

Q. Expand. If necessary, combine like terms.\newline(5x+1)(5x1)=(5x+1)(5x-1)=
  1. Identify special case: Identify the special case that applies to the given expression.\newlineThe expression (5x+1)(5x1)(5x+1)(5x-1) is in the form of (a+b)(ab)(a+b)(a-b).\newlineSpecial case: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2
  2. Identify values of a and b: Identify the values of a and b.\newlineCompare (5x+1)(5x1)(5x+1)(5x-1) with (a+b)(ab)(a+b)(a-b).\newlinea=5xa = 5x\newlineb=1b = 1
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (5x+1)(5x1)(5x+1)(5x-1).\newline(a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2\newline(5x+1)(5x1)=(5x)2(1)2(5x+1)(5x-1) = (5x)^2 - (1)^2
  4. Simplify expression: Simplify (5x)2(1)2(5x)^2 - (1)^2.
    (5x)2(1)2=(5x5x)(11)(5x)^2 - (1)^2 = (5x \cdot 5x) - (1 \cdot 1)
    = 25x2125x^2 - 1

More problems from Multiply two binomials: special cases