Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Multiply two binomials
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
x
−
4
)
(
x
+
7
)
=
(x-4)(x+7)=
(
x
−
4
)
(
x
+
7
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
−
5
d
+
8
)
(
d
−
3
)
(-5d+8)(d-3)
(
−
5
d
+
8
)
(
d
−
3
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
5
a
+
2
)
(
a
+
4
)
=
(5a+2)(a+4)=
(
5
a
+
2
)
(
a
+
4
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
5
n
−
5
)
(
2
+
2
n
)
=
(5n-5)(2+2n)=
(
5
n
−
5
)
(
2
+
2
n
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
−
2
h
+
9
)
(
9
h
−
2
)
=
(-2h+9)(9h-2)=
(
−
2
h
+
9
)
(
9
h
−
2
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
6
x
+
1
)
(
1
−
3
x
)
=
(6x+1)(1-3x)=
(
6
x
+
1
)
(
1
−
3
x
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
9
h
+
3
)
(
−
h
−
1
)
=
(9h+3)(-h-1)=
(
9
h
+
3
)
(
−
h
−
1
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
−
a
+
1
)
(
5
a
+
6
)
=
(-a+1)(5a+6)=
(
−
a
+
1
)
(
5
a
+
6
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
x
−
5
)
(
x
−
4
)
=
(x-5)(x-4)=
(
x
−
5
)
(
x
−
4
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
−
6
d
+
6
)
(
2
d
−
2
)
=
(-6d+6)(2d-2)=
(
−
6
d
+
6
)
(
2
d
−
2
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
9
b
−
1
)
(
9
b
+
1
)
=
(9b-1)(9b+1)=
(
9
b
−
1
)
(
9
b
+
1
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
−
f
+
10
)
(
3
f
−
1
)
=
(-f+10)(3f-1)=
(
−
f
+
10
)
(
3
f
−
1
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
−
8
k
+
1
)
(
−
8
k
+
1
)
(-8k+1)(-8k+1)
(
−
8
k
+
1
)
(
−
8
k
+
1
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
x
−
3
)
(
x
−
4
)
=
(x-3)(x-4)=
(
x
−
3
)
(
x
−
4
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
x
−
2
)
(
x
−
6
)
=
(x-2)(x-6)=
(
x
−
2
)
(
x
−
6
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
−
1
+
2
p
)
(
3
−
4
p
)
=
(-1+2p)(3-4p)=
(
−
1
+
2
p
)
(
3
−
4
p
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
4
−
7
y
)
(
7
+
4
y
)
=
(4-7y)(7+4y)=
(
4
−
7
y
)
(
7
+
4
y
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
3
k
+
4
)
(
9
k
+
5
)
=
(3k+4)(9k+5)=
(
3
k
+
4
)
(
9
k
+
5
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
−
4
c
+
1
)
(
4
c
+
1
)
(-4c+1)(4c+1)
(
−
4
c
+
1
)
(
4
c
+
1
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
9
+
q
)
(
8
−
q
)
=
(9+q)(8-q)=
(
9
+
q
)
(
8
−
q
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
c
+
8
)
(
8
c
+
2
)
=
(c+8)(8c+2)=
(
c
+
8
)
(
8
c
+
2
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
9
+
m
)
(
−
m
+
9
)
=
(9+m)(-m+9)=
(
9
+
m
)
(
−
m
+
9
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
x
+
4
)
(
x
+
6
)
=
(x+4)(x+6)=
(
x
+
4
)
(
x
+
6
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
+
x
)
(
2
−
x
)
=
(2+x)(2-x)=
(
2
+
x
)
(
2
−
x
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
x
−
2
)
(
x
−
1
)
=
(x-2)(x-1)=
(
x
−
2
)
(
x
−
1
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
2
)
(
x
+
2
)
=
(x+2)(x+2)=
(
x
+
2
)
(
x
+
2
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
x
−
3
)
(
2
x
−
3
)
=
(2x-3)(2x-3)=
(
2
x
−
3
)
(
2
x
−
3
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
−
10
)
(
x
−
10
)
=
(x-10)(x-10)=
(
x
−
10
)
(
x
−
10
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
8
)
(
x
−
8
)
=
(x+8)(x-8)=
(
x
+
8
)
(
x
−
8
)
=
Get tutor help
Expand.
\newline
Your answer should be a polynomial in standard form.
\newline
(
7
g
+
3
)
(
−
g
−
3
)
=
(7g+3)(-g-3)=
(
7
g
+
3
)
(
−
g
−
3
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
4
+
x
)
(
4
−
x
)
=
(4+x)(4-x)=
(
4
+
x
)
(
4
−
x
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
3
)
(
x
−
3
)
=
(x+3)(x-3)=
(
x
+
3
)
(
x
−
3
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
x
+
5
)
(
2
x
−
5
)
=
(2x+5)(2x-5)=
(
2
x
+
5
)
(
2
x
−
5
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
+
7
x
)
(
2
−
7
x
)
=
(2+7x)(2-7x)=
(
2
+
7
x
)
(
2
−
7
x
)
=
Get tutor help
Expand.
\newline
If necessary, combine like terms.
\newline
(
3
+
4
x
)
(
3
−
4
x
)
=
(3+4x)(3-4x)=
(
3
+
4
x
)
(
3
−
4
x
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
3
x
+
7
)
(
3
x
−
7
)
=
(3x+7)(3x-7)=
(
3
x
+
7
)
(
3
x
−
7
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
5
)
(
x
−
5
)
=
(x+5)(x-5)=
(
x
+
5
)
(
x
−
5
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
7
+
x
)
(
7
−
x
)
=
(7+x)(7-x)=
(
7
+
x
)
(
7
−
x
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
2
x
+
3
)
2
=
(2x+3)^{2}=
(
2
x
+
3
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
5
x
+
1
)
(
5
x
−
1
)
=
(5x+1)(5x-1)=
(
5
x
+
1
)
(
5
x
−
1
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
6
)
(
x
+
6
)
=
(x+6)(x+6)=
(
x
+
6
)
(
x
+
6
)
=
Get tutor help
Expand.
\newline
If necessary, combine like terms.
\newline
(
1
+
6
x
)
(
1
−
6
x
)
=
(1+6x)(1-6x)=
(
1
+
6
x
)
(
1
−
6
x
)
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
5
x
−
6
)
2
=
(5x-6)^2=
(
5
x
−
6
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
−
5
)
2
=
(x-5)^2=
(
x
−
5
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
+
7
)
2
=
(x+7)^2=
(
x
+
7
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
7
x
−
1
)
2
=
(7x-1)^2=
(
7
x
−
1
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
3
x
+
8
)
2
=
(3x+8)^2=
(
3
x
+
8
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
x
−
2
)
2
=
(x-2)^2=
(
x
−
2
)
2
=
Get tutor help
Expand. If necessary, combine like terms.
\newline
(
4
x
+
1
)
(
4
x
+
1
)
=
(4x+1)(4x+1)=
(
4
x
+
1
)
(
4
x
+
1
)
=
Get tutor help
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Previous
1
...
7
8
9
Next