Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Find trigonometric ratios using reference angles
(
2
2
2
x^
4
4
4
+
4
4
4
x^
3
3
3
- x^
2
2
2
) / x =
Get tutor help
Rewrite the expression in the form
9
n
9^n
9
n
.
\newline
9
7
/
9
5
=
9^7 / 9^5 =
9
7
/
9
5
=
Get tutor help
Simplify. Rewrite the expression in the form
9
n
9^n
9
n
.
\newline
(
9
2
)
5
=
(9^2)^5=
(
9
2
)
5
=
Get tutor help
22
22
22
.
f
(
x
)
=
−
3
−
0.8
x
f(x)=-3^{-0.8 x}
f
(
x
)
=
−
3
−
0.8
x
Get tutor help
22
22
22
.
f
(
x
)
=
−
3
−
0.8
x
f(x)=-3^{-0.8 x}
f
(
x
)
=
−
3
−
0.8
x
Get tutor help
(
4
4
4
^{
6
6
6
})(
4
4
4
^{
−
8
-8
−
8
})=
Get tutor help
The terms
w
w
w
,
x
x
x
,
y
y
y
and
z
z
z
are linked by the following relation:
x
2
y
=
3
w
z
1
3
x^2y = \frac{3w}{z^{\frac{1}{3}}}
x
2
y
=
z
3
1
3
w
. What is the correct expression for the term
z
z
z
?
Get tutor help
If
7
a
=
7
3
8
7^a=\sqrt[8]{7^3}
7
a
=
8
7
3
, what is the value of
a
?
a?
a
?
Get tutor help
d
y
d
x
=
y
4
\frac{d y}{d x}=y^{4}
d
x
d
y
=
y
4
and
y
(
2
)
=
−
1
y(2)=-1
y
(
2
)
=
−
1
.
\newline
y
(
−
1
)
=
y(-1)=
y
(
−
1
)
=
Get tutor help
Integrate
cosh
(
e
3
x
)
\cosh(e^{3x})
cosh
(
e
3
x
)
over the interval of
−
π
-\pi
−
π
to
π
\pi
π
Get tutor help
Select all the expressions that are equivalent to
5
5
×
8
5
5^5 \times 8^5
5
5
×
8
5
.
\newline
Multi-select Choices:
\newline
(A)
4
0
5
40^5
4
0
5
\newline
(B)
1
4
0
5
\frac{1}{40^5}
4
0
5
1
\newline
(C)
1
4
0
−
5
\frac{1}{40^{-5}}
4
0
−
5
1
\newline
(D)
4
0
25
40^{25}
4
0
25
Get tutor help
g
(
x
)
=
(
2
3
x
+
1
)
3
+
(
2
x
)
3
g(x)=\sqrt{\left(2^{3 x}+1\right)^{3}+(2 x)^{3}}
g
(
x
)
=
(
2
3
x
+
1
)
3
+
(
2
x
)
3
Get tutor help
(
6
a
3
+
7
a
2
)
−
(
5
a
3
+
9
a
2
+
a
)
=
(6a^3+7a^2) -(5a^3+9a^2+a)=
(
6
a
3
+
7
a
2
)
−
(
5
a
3
+
9
a
2
+
a
)
=
Get tutor help
(
4
r
2
−
3
r
+
2
)
−
(
−
r
2
−
3
r
)
=
(4r^2-3r+2) -(-r^2-3r)=
(
4
r
2
−
3
r
+
2
)
−
(
−
r
2
−
3
r
)
=
Get tutor help
lim
u
→
3
u
2
−
5
−
2
u
2
−
u
−
6
=
\lim _{u \rightarrow 3} \frac{\sqrt{u^{2}-5}-2}{u^{2}-u-6}=
lim
u
→
3
u
2
−
u
−
6
u
2
−
5
−
2
=
Get tutor help
cos
14
0
∘
−
cos
10
0
∘
sin
14
0
∘
−
sin
10
0
∘
=
\frac{\cos 140^{\circ}-\cos 100^{\circ}}{\sin 140^{\circ}-\sin 100^{\circ}}=
s
i
n
14
0
∘
−
s
i
n
10
0
∘
c
o
s
14
0
∘
−
c
o
s
10
0
∘
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that solve the following equation.
\newline
tan
θ
=
3
\tan \theta=\sqrt{3}
tan
θ
=
3
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Find all angles,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
, that solve the following equation.
\newline
sin
θ
=
1
\sin \theta=1
sin
θ
=
1
\newline
Answer:
θ
=
\theta=
θ
=
Get tutor help
Write the expression as a single power of
9
9
9
.
\newline
(
9
−
3
)
(
9
12
)
=
(9^{-3})(9^{12})=
(
9
−
3
)
(
9
12
)
=
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
sin
(
30
9
∘
)
\sin \left(309^{\circ}\right)
sin
(
30
9
∘
)
\newline
sin
(
□
∘
)
\sin \left(\square^{\circ}\right)
sin
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
cos
(
30
8
∘
)
\cos \left(308^{\circ}\right)
cos
(
30
8
∘
)
\newline
cos
(
□
∘
)
\cos \left(\square^{\circ}\right)
cos
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
tan
(
32
4
∘
)
\tan \left(324^{\circ}\right)
tan
(
32
4
∘
)
\newline
tan
(
□
∘
)
\tan \left(\square^{\circ}\right)
tan
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
tan
(
35
6
∘
)
\tan \left(356^{\circ}\right)
tan
(
35
6
∘
)
\newline
tan
(
□
∘
)
\tan \left(\square^{\circ}\right)
tan
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
tan
(
17
4
∘
)
\tan \left(174^{\circ}\right)
tan
(
17
4
∘
)
\newline
tan
(
□
∘
)
\tan \left(\square^{\circ}\right)
tan
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
sin
(
34
4
∘
)
\sin \left(344^{\circ}\right)
sin
(
34
4
∘
)
\newline
sin
(
□
∘
)
\sin \left(\square^{\circ}\right)
sin
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
tan
(
31
0
∘
)
\tan \left(310^{\circ}\right)
tan
(
31
0
∘
)
\newline
tan
(
□
∘
)
\tan \left(\square^{\circ}\right)
tan
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
tan
(
22
5
∘
)
\tan \left(225^{\circ}\right)
tan
(
22
5
∘
)
\newline
tan
(
□
∘
)
\tan \left(\square^{\circ}\right)
tan
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
sin
(
33
2
∘
)
\sin \left(332^{\circ}\right)
sin
(
33
2
∘
)
\newline
sin
(
□
∘
)
\sin \left(\square^{\circ}\right)
sin
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
cos
(
13
0
∘
)
\cos \left(130^{\circ}\right)
cos
(
13
0
∘
)
\newline
cos
(
□
∘
)
\cos \left(\square^{\circ}\right)
cos
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
cos
(
15
4
∘
)
\cos \left(154^{\circ}\right)
cos
(
15
4
∘
)
\newline
cos
(
□
∘
)
\cos \left(\square^{\circ}\right)
cos
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
sin
(
21
8
∘
)
\sin \left(218^{\circ}\right)
sin
(
21
8
∘
)
\newline
sin
(
□
∘
)
\sin \left(\square^{\circ}\right)
sin
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
cos
(
32
6
∘
)
\cos \left(326^{\circ}\right)
cos
(
32
6
∘
)
\newline
cos
(
□
∘
)
\cos \left(\square^{\circ}\right)
cos
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
cos
(
30
5
∘
)
\cos \left(305^{\circ}\right)
cos
(
30
5
∘
)
\newline
cos
(
□
∘
)
\cos \left(\square^{\circ}\right)
cos
(
□
∘
)
Get tutor help
Express as a function of a DIFFERENT angle,
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
tan
(
9
8
∘
)
\tan \left(98^{\circ}\right)
tan
(
9
8
∘
)
\newline
tan
(
□
∘
)
\tan \left(\square^{\circ}\right)
tan
(
□
∘
)
Get tutor help
What is the value of the expression below when
y
=
4
y=4
y
=
4
?
\newline
5
y
2
−
5
y
+
5
5 y^{2}-5 y+5
5
y
2
−
5
y
+
5
\newline
Answer:
Get tutor help
Is
8
\sqrt{8}
8
an irrational number?
\newline
Choices:
\newline
(A) yes
\newline
(B) no
Get tutor help
Which pair of angles are supplementary?
\newline
A)
6
9
∘
69^{\circ}
6
9
∘
and
13
3
∘
133^{\circ}
13
3
∘
\newline
B)
10
6
∘
106^{\circ}
10
6
∘
and
7
4
∘
74^{\circ}
7
4
∘
\newline
C)
4
4
∘
44^{\circ}
4
4
∘
and
12
9
∘
129^{\circ}
12
9
∘
\newline
D)
9
7
∘
97^{\circ}
9
7
∘
and
9
3
∘
93^{\circ}
9
3
∘
\newline
E)None of these are correct.
Get tutor help
\newline
Find
(
f
∘
g
)
(
−
4
)
(f \circ g)(-4)
(
f
∘
g
)
(
−
4
)
for the following functions.
\newline
f
(
x
)
=
4
x
−
2
and
g
(
x
)
=
x
2
f(x)=4 x-2 \text { and } g(x)=x^{2}
f
(
x
)
=
4
x
−
2
and
g
(
x
)
=
x
2
\newline
Answer
\newline
How to enter your answer (opens in new window)
\newline
(
f
∘
g
)
(
−
4
)
=
(f \circ g)(-4)=
(
f
∘
g
)
(
−
4
)
=
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
118
0
∘
1180^{\circ}
118
0
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
104
3
∘
1043^{\circ}
104
3
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
−
52
0
∘
-520^{\circ}
−
52
0
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
75
1
∘
751^{\circ}
75
1
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
76
5
∘
765^{\circ}
76
5
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
90
2
∘
902^{\circ}
90
2
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
−
74
7
∘
-747^{\circ}
−
74
7
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
91
3
∘
913^{\circ}
91
3
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
109
2
∘
1092^{\circ}
109
2
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Fully simplify.
\newline
(
4
x
5
−
y
5
)
2
\left(4 x^{5}-y^{5}\right)^{2}
(
4
x
5
−
y
5
)
2
\newline
Answer:
Get tutor help
Fully simplify.
\newline
(
4
x
5
−
y
4
)
2
\left(4 x^{5}-y^{4}\right)^{2}
(
4
x
5
−
y
4
)
2
\newline
Answer:
Get tutor help
Fully simplify.
\newline
(
2
x
5
−
y
5
)
2
\left(2 x^{5}-y^{5}\right)^{2}
(
2
x
5
−
y
5
)
2
\newline
Answer:
Get tutor help
1
2
Next