Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(2x^(5)-y^(5))^(2)
Answer:

Fully simplify.\newline(2x5y5)2 \left(2 x^{5}-y^{5}\right)^{2} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(2x5y5)2 \left(2 x^{5}-y^{5}\right)^{2} \newlineAnswer:
  1. Recognize Structure: Recognize the structure of the expression.\newlineThe given expression is a binomial raised to the second power. This can be expanded using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, where a=2x5a = 2x^5 and b=y5b = y^5.
  2. Apply Formula: Apply the binomial square formula.\newlineUsing the formula from Step 11, we expand (2x5y5)2(2x^5 - y^5)^2 to get (2x5)22(2x5)(y5)+(y5)2(2x^5)^2 - 2\cdot(2x^5)\cdot(y^5) + (y^5)^2.
  3. Calculate Terms: Calculate each term separately.\newlineFirst term: 2x52x^5^22 = 44x^{1010} since$22since \$2^2*x5x^5^22 = 44x^{1010}\)\newlineSecond term: 2(2x5)(y5)=4x5y5$since$22=42*(2x^5)*(y^5) = 4x^5y^5 \$since \$2*2 = 4 and we just multiply the x5x^5 and y5y^5 terms)\)\newlineThird term: y5y^5^22 = y^{1010} since \(y^5^22 = y^{1010}\)
  4. Combine Simplified Expression: Combine the terms to get the final simplified expression.\newlineThe fully simplified form of the expression is 4x104x5y5+y10.4x^{10} - 4x^{5}y^{5} + y^{10}.

More problems from Find trigonometric ratios using reference angles