Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find an angle 
theta coterminal to 
1043^(@), where 
0^(@) <= theta < 360^(@).
Answer:

Find an angle θ \theta coterminal to 1043 1043^{\circ} , where 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:

Full solution

Q. Find an angle θ \theta coterminal to 1043 1043^{\circ} , where 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:
  1. Divide by 360360: To find an angle coterminal to 10431043^\circ that lies between 00^\circ and 360360^\circ, we need to subtract or add multiples of 360360^\circ until the angle is within the desired range.
  2. Subtract full rotations: First, we determine how many full rotations of 360°360° are contained in 1043°1043°. We do this by dividing 10431043 by 360360. \newline1043÷3602.89721043 \div 360 \approx 2.8972\newlineThis means that 1043°1043° contains 22 full rotations plus some extra degrees.
  3. Calculate coterminal angle: Since we are only interested in the extra degrees, we subtract the full rotations 2×3602 \times 360^\circ from 10431043^\circ.1043(2×360)=1043720=3231043^\circ - (2 \times 360^\circ) = 1043^\circ - 720^\circ = 323^\circ
  4. Calculate coterminal angle: Since we are only interested in the extra degrees, we subtract the full rotations 2×3602 \times 360^\circ from 10431043^\circ.1043(2×360)=1043720=3231043^\circ - (2 \times 360^\circ) = 1043^\circ - 720^\circ = 323^\circThe result, 323323^\circ, is the coterminal angle to 10431043^\circ that lies between 00^\circ and 360360^\circ.

More problems from Find trigonometric ratios using reference angles