Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a function of a DIFFERENT angle, 
0^(@) <= theta < 360^(@).

tan(324^(@))

tan(◻^(@))

Express as a function of a DIFFERENT angle, 0^{\circ} \leq \theta<360^{\circ} .\newlinetan(324) \tan \left(324^{\circ}\right) \newlinetan() \tan \left(\square^{\circ}\right)

Full solution

Q. Express as a function of a DIFFERENT angle, 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlinetan(324) \tan \left(324^{\circ}\right) \newlinetan() \tan \left(\square^{\circ}\right)
  1. Understand the problem: Understand the problem.\newlineWe need to express tan(324°)\tan(324°) as a function of a different angle within the range of 0° to 360°360°. To do this, we can use the periodic properties of the tangent function and the fact that it is negative in the fourth quadrant, where 324°324° lies.
  2. Find reference angle: Find the reference angle for 324°324°. The reference angle is the acute angle that the terminal side of the angle makes with the x-axis. For an angle in the fourth quadrant, the reference angle is 360°θ360° - \theta. So, the reference angle for 324°324° is 360°324°=36°360° - 324° = 36°.
  3. Use reference angle: Use the reference angle to express tan(324°)\tan(324°). Since tan(θ)=tan(θ+n180°)\tan(\theta) = \tan(\theta + n\cdot180°) for any integer nn, and the tangent function is negative in the fourth quadrant, we can express tan(324°)\tan(324°) as tan(36°)-\tan(36°).

More problems from Find trigonometric ratios using reference angles