Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find an angle 
theta coterminal to 
765^(@), where 
0^(@) <= theta < 360^(@).
Answer:

Find an angle θ \theta coterminal to 765 765^{\circ} , where 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:

Full solution

Q. Find an angle θ \theta coterminal to 765 765^{\circ} , where 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:
  1. Subtract 360360°: To find an angle coterminal to 765°765° that lies between 0° and 360°360°, we need to subtract or add multiples of 360°360° until the angle falls within the desired range. Since 765°765° is greater than 360°360°, we will subtract multiples of 360°360°.\newlineCalculation: 765°360°=405°765° - 360° = 405°
  2. Subtract 360360°: The result from the first step is still greater than 360°360°, so we need to subtract 360°360° once more.\newlineCalculation: 405°360°=45°405° - 360° = 45°
  3. Final Coterminal Angle: The result is now within the range of 00^\circ to 360360^\circ, so we have found the coterminal angle.

More problems from Find trigonometric ratios using reference angles