Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a function of a DIFFERENT angle, 
0^(@) <= theta < 360^(@).

sin(309^(@))

sin(◻^(@))

Express as a function of a DIFFERENT angle, 0^{\circ} \leq \theta<360^{\circ} .\newlinesin(309) \sin \left(309^{\circ}\right) \newlinesin() \sin \left(\square^{\circ}\right)

Full solution

Q. Express as a function of a DIFFERENT angle, 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlinesin(309) \sin \left(309^{\circ}\right) \newlinesin() \sin \left(\square^{\circ}\right)
  1. Understand the problem: Understand the problem.\newlineWe need to express sin(309)\sin(309^\circ) in terms of a different angle that is within the range of 00^\circ to 360360^\circ. This typically involves using known trigonometric identities or properties to rewrite the sine of an angle in terms of another angle.
  2. Use trigonometric identities: Use the fact that sin(θ)=sin(180°θ)\sin(\theta) = \sin(180° - \theta) or sin(360°θ)\sin(360° - \theta) to find an equivalent expression.\newlineSince 309°309° is more than 180°180°, we can use the identity sin(θ)=sin(360°θ)\sin(\theta) = \sin(360° - \theta) to find a different angle that gives the same sine value.
  3. Calculate equivalent angle: Calculate the equivalent angle using the identity.\newlinesin(309°)=sin(360°309°)\sin(309°) = \sin(360° - 309°)\newlinesin(309°)=sin(51°)\sin(309°) = \sin(51°)
  4. Verify new angle: Verify that the new angle is within the specified range.\newline51°51° is indeed within the range of 0° to 360°360°, so our expression is valid.

More problems from Find trigonometric ratios using reference angles