Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find an angle 
theta coterminal to 
1092^(@), where 
0^(@) <= theta < 360^(@).
Answer:

Find an angle θ \theta coterminal to 1092 1092^{\circ} , where 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:

Full solution

Q. Find an angle θ \theta coterminal to 1092 1092^{\circ} , where 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:
  1. Understand coterminal angles: Understand what a coterminal angle is.\newlineCoterminal angles are angles that share the same initial and terminal sides but differ in the number of rotations. To find a coterminal angle, we can add or subtract multiples of 360360^\circ (a full rotation) from the given angle.
  2. Subtract multiples of 360°360°: Subtract multiples of 360°360° from 1092°1092° until the result is between 0° and 360°360°.\newline1092°360°=732°1092° - 360° = 732°\newline732°732° is still greater than 360°360°, so we subtract 360°360° again.\newline732°360°=372°732° - 360° = 372°\newline360°360°00 is still greater than 360°360°, so we subtract 360°360° one more time.\newline360°360°33\newline360°360°44 is between 0° and 360°360°, so it is a coterminal angle to 1092°1092°.
  3. Verify result in range: Verify that the result is within the required range.\newlineSince 1212^\circ is greater than or equal to 00^\circ and less than 360360^\circ, it satisfies the condition for the coterminal angle.

More problems from Find trigonometric ratios using reference angles