Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find an angle 
theta coterminal to 
-747^(@), where 
0^(@) <= theta < 360^(@).
Answer:

Find an angle θ \theta coterminal to 747 -747^{\circ} , where 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:

Full solution

Q. Find an angle θ \theta coterminal to 747 -747^{\circ} , where 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:
  1. Add 360360°: To find a coterminal angle, we can add or subtract multiples of 360°360° to the given angle until the result is within the desired range of 0° to 360°360°. Since 747°-747° is negative, we will add 360°360° repeatedly until we get a positive angle in the specified range.
  2. Add 360360°: First, add 360360° to 747°-747°: 747°+360°=387°-747° + 360° = -387°. The result is still negative, so we need to add 360360° again.
  3. Add 360360°: Add 360360° to 387°-387°: 387°+360°=27°-387° + 360° = -27°. The result is still negative, so we need to add 360360° one more time.
  4. Add 360360°: Add 360360° to 27°-27°: 27°+360°=333°-27° + 360° = 333°. The result is now positive and within the range of 0° to 360°360°, so we have found a coterminal angle.

More problems from Find trigonometric ratios using reference angles