Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a function of a DIFFERENT angle, 
0^(@) <= theta < 360^(@).

cos(305^(@))

cos(◻^(@))

Express as a function of a DIFFERENT angle, 0^{\circ} \leq \theta<360^{\circ} .\newlinecos(305) \cos \left(305^{\circ}\right) \newlinecos() \cos \left(\square^{\circ}\right)

Full solution

Q. Express as a function of a DIFFERENT angle, 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlinecos(305) \cos \left(305^{\circ}\right) \newlinecos() \cos \left(\square^{\circ}\right)
  1. Identify Reference Angle: Identify the reference angle for 305°305°. The reference angle is the acute angle formed by the terminal side of the given angle and the x-axis. Since 305°305° is in the fourth quadrant, we subtract it from 360°360° to find the reference angle. Reference angle = 360°305°=55°360° - 305° = 55°
  2. Determine Cosine: Determine the cosine of the reference angle.\newlineSince cosine is positive in the fourth quadrant and the reference angle is 55°55°, cos(305°)\cos(305°) is equal to the cosine of its reference angle.\newlinecos(305°)=cos(55°)\cos(305°) = \cos(55°)
  3. Express as Different Angle: Express cos(305°)\cos(305°) as a function of a different angle.\newlineWe can use the symmetry properties of the cosine function to express cos(305°)\cos(305°) in terms of a different angle. Since the cosine function is even, cos(θ)=cos(θ)\cos(\theta) = \cos(-\theta). Therefore, we can express cos(305°)\cos(305°) as cos(55°)\cos(-55°).\newlinecos(305°)=cos(55°)\cos(305°) = \cos(-55°)

More problems from Find trigonometric ratios using reference angles