Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(4x^(5)-y^(4))^(2)
Answer:

Fully simplify.\newline(4x5y4)2 \left(4 x^{5}-y^{4}\right)^{2} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(4x5y4)2 \left(4 x^{5}-y^{4}\right)^{2} \newlineAnswer:
  1. Apply Binomial Expansion Formula: To simplify the expression 4x5y4)2weneedtoapplythebinomialexpansionformula$ab)2=a22ab+b2where$a4x^{5}-y^{4})^{2}\, we need to apply the binomial expansion formula \$a-b)^{2} = a^{2} - 2ab + b^{2}\, where \$a is 4x54x^{5} and bb is y4y^{4}.
  2. Square 4x54x^{5}: First, we square the term 4x54x^{5} to get (4x5)2=16x10(4x^{5})^2 = 16x^{10}.
  3. Square y4y^{4}: Next, we square the term y4y^{4} to get (y4)2=y8(y^{4})^2 = y^{8}.
  4. Multiply and Double: Then, we multiply the two terms together and double them to get the middle term of the binomial expansion, which is 2×(4x5)×(y4)=8x5y4-2 \times (4x^{5}) \times (y^{4}) = -8x^{5}y^{4}.
  5. Combine All Terms: Now, we combine all the terms to get the fully simplified expression: 16x108x5y4+y816x^{10} - 8x^{5}y^{4} + y^{8}.

More problems from Find trigonometric ratios using reference angles