Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find an angle 
theta coterminal to 
-520^(@), where 
0^(@) <= theta < 360^(@).
Answer:

Find an angle θ \theta coterminal to 520 -520^{\circ} , where 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:

Full solution

Q. Find an angle θ \theta coterminal to 520 -520^{\circ} , where 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:
  1. Add 360360° to 520-520°: To find a coterminal angle, we can add or subtract multiples of 360°360° to the given angle until the result is within the desired range of 0° to 360°360°. Since 520°-520° is negative, we will add 360°360° repeatedly until we get a positive angle in the correct range.
  2. Add 360360° to 160-160°: First addition: 520°+360°=160°-520° + 360° = -160°. The angle is still negative, so we need to add 360°360° again.
  3. Final Coterminal Angle: Second addition: 160+360=200-160^\circ + 360^\circ = 200^\circ. This angle is positive and within the range of 00^\circ to 360360^\circ, so it is a coterminal angle to 520-520^\circ.

More problems from Find trigonometric ratios using reference angles