Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a function of a DIFFERENT angle, 
0^(@) <= theta < 360^(@).

cos(326^(@))

cos(◻^(@))

Express as a function of a DIFFERENT angle, 0^{\circ} \leq \theta<360^{\circ} .\newlinecos(326) \cos \left(326^{\circ}\right) \newlinecos() \cos \left(\square^{\circ}\right)

Full solution

Q. Express as a function of a DIFFERENT angle, 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlinecos(326) \cos \left(326^{\circ}\right) \newlinecos() \cos \left(\square^{\circ}\right)
  1. Understand the problem: Understand the problem.\newlineWe need to express cos(326)\cos(326^\circ) as a function of a different angle within the range of 00^\circ to 360360^\circ. This typically involves finding an equivalent angle that has the same cosine value but is different from 326326^\circ.
  2. Find the reference angle: Find the reference angle.\newlineThe reference angle is the acute angle formed by the terminal side of the given angle and the x-axis. For angles in the fourth quadrant, where 326°326° lies, the reference angle θ\theta' can be found using the formula θ=360°θ\theta' = 360° - \theta.
  3. Calculate the reference angle: Calculate the reference angle.\newlineθ=360°326°=34°\theta' = 360° - 326° = 34°\newlineThe reference angle for 326°326° is 34°34°.
  4. Determine the cosine: Determine the cosine of the reference angle.\newlineSince cosine is positive in the fourth quadrant and the reference angle is in the first quadrant where cosine is also positive, cos(326)\cos(326^\circ) is equal to cos(34)\cos(34^\circ).
  5. Express the original cosine: Express the original cosine function in terms of the reference angle. cos(326)=cos(34)\cos(326^\circ) = \cos(34^\circ)

More problems from Find trigonometric ratios using reference angles