Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Transformations of functions
Which equation has the same solution as
x
2
+
9
x
+
6
=
−
7
x^{2}+9 x+6=-7
x
2
+
9
x
+
6
=
−
7
?
\newline
(
x
+
4.5
)
2
=
−
33.25
(x+4.5)^{2}=-33.25
(
x
+
4.5
)
2
=
−
33.25
\newline
(
x
−
4.5
)
2
=
7.25
(x-4.5)^{2}=7.25
(
x
−
4.5
)
2
=
7.25
\newline
(
x
+
4.5
)
2
=
7.25
(x+4.5)^{2}=7.25
(
x
+
4.5
)
2
=
7.25
\newline
(
x
−
4.5
)
2
=
−
33.25
(x-4.5)^{2}=-33.25
(
x
−
4.5
)
2
=
−
33.25
Get tutor help
Which equation has the same solution as
x
2
+
x
+
19
=
−
2
x^{2}+x+19=-2
x
2
+
x
+
19
=
−
2
?
\newline
(
x
+
0.5
)
2
=
−
21.25
(x+0.5)^{2}=-21.25
(
x
+
0.5
)
2
=
−
21.25
\newline
(
x
−
0.5
)
2
=
−
21.25
(x-0.5)^{2}=-21.25
(
x
−
0.5
)
2
=
−
21.25
\newline
(
x
−
0.5
)
2
=
−
20.75
(x-0.5)^{2}=-20.75
(
x
−
0.5
)
2
=
−
20.75
\newline
(
x
+
0.5
)
2
=
−
20.75
(x+0.5)^{2}=-20.75
(
x
+
0.5
)
2
=
−
20.75
Get tutor help
Which equation has the same solution as
x
2
+
3
x
−
20
=
−
8
x^{2}+3 x-20=-8
x
2
+
3
x
−
20
=
−
8
?
\newline
(
x
−
1.5
)
2
=
14.25
(x-1.5)^{2}=14.25
(
x
−
1.5
)
2
=
14.25
\newline
(
x
−
1.5
)
2
=
9.75
(x-1.5)^{2}=9.75
(
x
−
1.5
)
2
=
9.75
\newline
(
x
+
1.5
)
2
=
9.75
(x+1.5)^{2}=9.75
(
x
+
1.5
)
2
=
9.75
\newline
(
x
+
1.5
)
2
=
14.25
(x+1.5)^{2}=14.25
(
x
+
1.5
)
2
=
14.25
Get tutor help
Which equation has the same solution as
x
2
−
13
x
+
20
=
−
6
x^{2}-13 x+20=-6
x
2
−
13
x
+
20
=
−
6
?
\newline
(
x
−
6.5
)
2
=
−
68.25
(x-6.5)^{2}=-68.25
(
x
−
6.5
)
2
=
−
68.25
\newline
(
x
+
6.5
)
2
=
16.25
(x+6.5)^{2}=16.25
(
x
+
6.5
)
2
=
16.25
\newline
(
x
−
6.5
)
2
=
16.25
(x-6.5)^{2}=16.25
(
x
−
6.5
)
2
=
16.25
\newline
(
x
+
6.5
)
2
=
−
68.25
(x+6.5)^{2}=-68.25
(
x
+
6.5
)
2
=
−
68.25
Get tutor help
Which equation has the same solution as
x
2
+
2
x
+
14
=
−
7
x^{2}+2 x+14=-7
x
2
+
2
x
+
14
=
−
7
?
\newline
(
x
−
1
)
2
=
−
22
(x-1)^{2}=-22
(
x
−
1
)
2
=
−
22
\newline
(
x
+
1
)
2
=
−
22
(x+1)^{2}=-22
(
x
+
1
)
2
=
−
22
\newline
(
x
+
1
)
2
=
−
20
(x+1)^{2}=-20
(
x
+
1
)
2
=
−
20
\newline
(
x
−
1
)
2
=
−
20
(x-1)^{2}=-20
(
x
−
1
)
2
=
−
20
Get tutor help
Which equation has the same solution as
x
2
+
15
x
−
8
=
−
6
x^{2}+15 x-8=-6
x
2
+
15
x
−
8
=
−
6
?
\newline
(
x
−
7.5
)
2
=
−
54.25
(x-7.5)^{2}=-54.25
(
x
−
7.5
)
2
=
−
54.25
\newline
(
x
−
7.5
)
2
=
58.25
(x-7.5)^{2}=58.25
(
x
−
7.5
)
2
=
58.25
\newline
(
x
+
7.5
)
2
=
−
54.25
(x+7.5)^{2}=-54.25
(
x
+
7.5
)
2
=
−
54.25
\newline
(
x
+
7.5
)
2
=
58.25
(x+7.5)^{2}=58.25
(
x
+
7.5
)
2
=
58.25
Get tutor help
Which equation has the same solution as
x
2
+
13
x
−
20
=
1
x^{2}+13 x-20=1
x
2
+
13
x
−
20
=
1
?
\newline
(
x
−
6.5
)
2
=
63.25
(x-6.5)^{2}=63.25
(
x
−
6.5
)
2
=
63.25
\newline
(
x
−
6.5
)
2
=
−
21.25
(x-6.5)^{2}=-21.25
(
x
−
6.5
)
2
=
−
21.25
\newline
(
x
+
6.5
)
2
=
63.25
(x+6.5)^{2}=63.25
(
x
+
6.5
)
2
=
63.25
\newline
(
x
+
6.5
)
2
=
−
21.25
(x+6.5)^{2}=-21.25
(
x
+
6.5
)
2
=
−
21.25
Get tutor help
Which equation has the same solution as
x
2
+
4
x
−
16
=
−
4
x^{2}+4 x-16=-4
x
2
+
4
x
−
16
=
−
4
?
\newline
(
x
−
2
)
2
=
16
(x-2)^{2}=16
(
x
−
2
)
2
=
16
\newline
(
x
+
2
)
2
=
16
(x+2)^{2}=16
(
x
+
2
)
2
=
16
\newline
(
x
−
2
)
2
=
8
(x-2)^{2}=8
(
x
−
2
)
2
=
8
\newline
(
x
+
2
)
2
=
8
(x+2)^{2}=8
(
x
+
2
)
2
=
8
Get tutor help
Which equation has the same solution as
x
2
+
13
x
+
10
=
2
x^{2}+13 x+10=2
x
2
+
13
x
+
10
=
2
?
\newline
(
x
−
6.5
)
2
=
−
50.25
(x-6.5)^{2}=-50.25
(
x
−
6.5
)
2
=
−
50.25
\newline
(
x
+
6.5
)
2
=
34.25
(x+6.5)^{2}=34.25
(
x
+
6.5
)
2
=
34.25
\newline
(
x
+
6.5
)
2
=
−
50.25
(x+6.5)^{2}=-50.25
(
x
+
6.5
)
2
=
−
50.25
\newline
(
x
−
6.5
)
2
=
34.25
(x-6.5)^{2}=34.25
(
x
−
6.5
)
2
=
34.25
Get tutor help
Which equation has the same solution as
x
2
+
12
x
+
6
=
7
x^{2}+12 x+6=7
x
2
+
12
x
+
6
=
7
?
\newline
(
x
+
6
)
2
=
37
(x+6)^{2}=37
(
x
+
6
)
2
=
37
\newline
(
x
−
6
)
2
=
37
(x-6)^{2}=37
(
x
−
6
)
2
=
37
\newline
(
x
+
6
)
2
=
−
35
(x+6)^{2}=-35
(
x
+
6
)
2
=
−
35
\newline
(
x
−
6
)
2
=
−
35
(x-6)^{2}=-35
(
x
−
6
)
2
=
−
35
Get tutor help
Which equation has the same solution as
x
2
+
17
x
−
18
=
6
x^{2}+17 x-18=6
x
2
+
17
x
−
18
=
6
?
\newline
(
x
+
8.5
)
2
=
−
48.25
(x+8.5)^{2}=-48.25
(
x
+
8.5
)
2
=
−
48.25
\newline
(
x
−
8.5
)
2
=
−
48.25
(x-8.5)^{2}=-48.25
(
x
−
8.5
)
2
=
−
48.25
\newline
(
x
−
8.5
)
2
=
96.25
(x-8.5)^{2}=96.25
(
x
−
8.5
)
2
=
96.25
\newline
(
x
+
8.5
)
2
=
96.25
(x+8.5)^{2}=96.25
(
x
+
8.5
)
2
=
96.25
Get tutor help
Which equation has the same solution as
x
2
−
19
x
−
8
=
2
x^{2}-19 x-8=2
x
2
−
19
x
−
8
=
2
?
\newline
(
x
−
9.5
)
2
=
−
80.25
(x-9.5)^{2}=-80.25
(
x
−
9.5
)
2
=
−
80.25
\newline
(
x
+
9.5
)
2
=
100.25
(x+9.5)^{2}=100.25
(
x
+
9.5
)
2
=
100.25
\newline
(
x
+
9.5
)
2
=
−
80.25
(x+9.5)^{2}=-80.25
(
x
+
9.5
)
2
=
−
80.25
\newline
(
x
−
9.5
)
2
=
100.25
(x-9.5)^{2}=100.25
(
x
−
9.5
)
2
=
100.25
Get tutor help
Which equation has the same solution as
x
2
+
11
x
+
16
=
2
x^{2}+11 x+16=2
x
2
+
11
x
+
16
=
2
?
\newline
(
x
+
5.5
)
2
=
−
44.25
(x+5.5)^{2}=-44.25
(
x
+
5.5
)
2
=
−
44.25
\newline
(
x
−
5.5
)
2
=
−
44.25
(x-5.5)^{2}=-44.25
(
x
−
5.5
)
2
=
−
44.25
\newline
(
x
−
5.5
)
2
=
16.25
(x-5.5)^{2}=16.25
(
x
−
5.5
)
2
=
16.25
\newline
(
x
+
5.5
)
2
=
16.25
(x+5.5)^{2}=16.25
(
x
+
5.5
)
2
=
16.25
Get tutor help
Which equation has the same solution as
x
2
−
13
x
+
13
=
−
2
x^{2}-13 x+13=-2
x
2
−
13
x
+
13
=
−
2
?
\newline
(
x
+
6.5
)
2
=
27.25
(x+6.5)^{2}=27.25
(
x
+
6.5
)
2
=
27.25
\newline
(
x
−
6.5
)
2
=
−
57.25
(x-6.5)^{2}=-57.25
(
x
−
6.5
)
2
=
−
57.25
\newline
(
x
−
6.5
)
2
=
27.25
(x-6.5)^{2}=27.25
(
x
−
6.5
)
2
=
27.25
\newline
(
x
+
6.5
)
2
=
−
57.25
(x+6.5)^{2}=-57.25
(
x
+
6.5
)
2
=
−
57.25
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are complementary angles. If
m
∠
1
=
(
2
x
−
13
)
∘
\mathrm{m} \angle 1=(2 x-13)^{\circ}
m
∠1
=
(
2
x
−
13
)
∘
and
m
∠
2
=
(
x
−
17
)
∘
\mathrm{m} \angle 2=(x-17)^{\circ}
m
∠2
=
(
x
−
17
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are supplementary angles. If
m
∠
1
=
(
2
x
+
15
)
∘
\mathrm{m} \angle 1=(2 x+15)^{\circ}
m
∠1
=
(
2
x
+
15
)
∘
and
m
∠
2
=
(
4
x
+
9
)
∘
\mathrm{m} \angle 2=(4 x+9)^{\circ}
m
∠2
=
(
4
x
+
9
)
∘
, then find the measure of
∠
1
\angle 1
∠1
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are complementary angles. If
m
∠
1
=
(
4
x
+
2
)
∘
\mathrm{m} \angle 1=(4 x+2)^{\circ}
m
∠1
=
(
4
x
+
2
)
∘
and
m
∠
2
=
(
6
x
−
12
)
∘
\mathrm{m} \angle 2=(6 x-12)^{\circ}
m
∠2
=
(
6
x
−
12
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are supplementary angles. If
m
∠
1
=
(
2
x
+
21
)
∘
\mathrm{m} \angle 1=(2 x+21)^{\circ}
m
∠1
=
(
2
x
+
21
)
∘
and
m
∠
2
=
(
3
x
+
24
)
∘
\mathrm{m} \angle 2=(3 x+24)^{\circ}
m
∠2
=
(
3
x
+
24
)
∘
, then find the measure of
∠
1
\angle 1
∠1
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are complementary angles. If
m
∠
1
=
(
2
x
+
1
)
∘
\mathrm{m} \angle 1=(2 x+1)^{\circ}
m
∠1
=
(
2
x
+
1
)
∘
and
m
∠
2
=
(
4
x
+
11
)
∘
\mathrm{m} \angle 2=(4 x+11)^{\circ}
m
∠2
=
(
4
x
+
11
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are complementary angles. If
m
∠
1
=
(
6
x
+
15
)
∘
\mathrm{m} \angle 1=(6 x+15)^{\circ}
m
∠1
=
(
6
x
+
15
)
∘
and
m
∠
2
=
(
x
−
9
)
∘
\mathrm{m} \angle 2=(x-9)^{\circ}
m
∠2
=
(
x
−
9
)
∘
, then find the measure of
∠
1
\angle 1
∠1
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are complementary angles. If
m
∠
1
=
(
x
+
11
)
∘
\mathrm{m} \angle 1=(x+11)^{\circ}
m
∠1
=
(
x
+
11
)
∘
and
m
∠
2
=
(
3
x
−
1
)
∘
\mathrm{m} \angle 2=(3 x-1)^{\circ}
m
∠2
=
(
3
x
−
1
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are supplementary angles. If
m
∠
1
=
(
7
x
−
2
)
∘
\mathrm{m} \angle 1=(7 x-2)^{\circ}
m
∠1
=
(
7
x
−
2
)
∘
and
m
∠
2
=
(
4
x
+
28
)
∘
\mathrm{m} \angle 2=(4 x+28)^{\circ}
m
∠2
=
(
4
x
+
28
)
∘
, then find the measure of
∠
1
\angle 1
∠1
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are supplementary angles. If
m
∠
1
=
(
x
+
7
)
∘
\mathrm{m} \angle 1=(x+7)^{\circ}
m
∠1
=
(
x
+
7
)
∘
and
m
∠
2
=
(
3
x
+
25
)
∘
\mathrm{m} \angle 2=(3 x+25)^{\circ}
m
∠2
=
(
3
x
+
25
)
∘
, then find the measure of
∠
1
\angle 1
∠1
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are supplementary angles. If
m
∠
1
=
(
5
x
−
6
)
∘
\mathrm{m} \angle 1=(5 x-6)^{\circ}
m
∠1
=
(
5
x
−
6
)
∘
and
m
∠
2
=
(
5
x
−
4
)
∘
\mathrm{m} \angle 2=(5 x-4)^{\circ}
m
∠2
=
(
5
x
−
4
)
∘
, then find the measure of
∠
1
\angle 1
∠1
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are vertical angles. If
m
∠
1
=
(
8
x
−
28
)
∘
\mathrm{m} \angle 1=(8 x-28)^{\circ}
m
∠1
=
(
8
x
−
28
)
∘
and
m
∠
2
=
(
4
x
+
4
)
∘
\mathrm{m} \angle 2=(4 x+4)^{\circ}
m
∠2
=
(
4
x
+
4
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are complementary angles. If
m
∠
1
=
(
x
+
18
)
∘
\mathrm{m} \angle 1=(x+18)^{\circ}
m
∠1
=
(
x
+
18
)
∘
and
m
∠
2
=
(
3
x
+
12
)
∘
\mathrm{m} \angle 2=(3 x+12)^{\circ}
m
∠2
=
(
3
x
+
12
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are supplementary angles. If
m
∠
1
=
(
3
x
−
30
)
∘
\mathrm{m} \angle 1=(3 x-30)^{\circ}
m
∠1
=
(
3
x
−
30
)
∘
and
m
∠
2
=
(
3
x
+
18
)
∘
\mathrm{m} \angle 2=(3 x+18)^{\circ}
m
∠2
=
(
3
x
+
18
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are complementary angles. If
m
∠
1
=
(
x
+
18
)
∘
\mathrm{m} \angle 1=(x+18)^{\circ}
m
∠1
=
(
x
+
18
)
∘
and
m
∠
2
=
(
3
x
+
12
)
∘
\mathrm{m} \angle 2=(3 x+12)^{\circ}
m
∠2
=
(
3
x
+
12
)
∘
, then find the measure of
∠
1
\angle 1
∠1
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are supplementary angles. If
m
∠
1
=
(
2
x
−
26
)
∘
\mathrm{m} \angle 1=(2 x-26)^{\circ}
m
∠1
=
(
2
x
−
26
)
∘
and
m
∠
2
=
(
5
x
−
11
)
∘
\mathrm{m} \angle 2=(5 x-11)^{\circ}
m
∠2
=
(
5
x
−
11
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are complementary angles. If
m
∠
1
=
(
x
−
26
)
∘
\mathrm{m} \angle 1=(x-26)^{\circ}
m
∠1
=
(
x
−
26
)
∘
and
m
∠
2
=
(
x
−
28
)
∘
\mathrm{m} \angle 2=(x-28)^{\circ}
m
∠2
=
(
x
−
28
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
∠
1
\angle 1
∠1
and
∠
2
\angle 2
∠2
are supplementary angles. If
m
∠
1
=
(
x
−
11
)
∘
\mathrm{m} \angle 1=(x-11)^{\circ}
m
∠1
=
(
x
−
11
)
∘
and
m
∠
2
=
(
3
x
+
7
)
∘
\mathrm{m} \angle 2=(3 x+7)^{\circ}
m
∠2
=
(
3
x
+
7
)
∘
, then find the measure of
∠
2
\angle 2
∠2
.
\newline
Answer:
Get tutor help
Which of the following is the correct form of
−
3
i
8
−
3
i
6
−
3
i
−
1
-3i^8 - 3i^6 - 3i^{-1}
−
3
i
8
−
3
i
6
−
3
i
−
1
, where the imaginary number
i
i
i
is such that
i
2
=
−
1
i^2 = -1
i
2
=
−
1
?
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
1
−
3
i
-1 - 3i
−
1
−
3
i
\newline
(C)
−
7
−
3
i
-7 - 3i
−
7
−
3
i
\newline
(D)
−
1
−
3
i
-1 - 3i
−
1
−
3
i
Get tutor help
Find
g
(
x
)
g(x)
g
(
x
)
, where
g
(
x
)
g(x)
g
(
x
)
is the translation
9
9
9
units down of
f
(
x
)
=
10
x
+
8
f(x) = 10x + 8
f
(
x
)
=
10
x
+
8
.
\newline
Choices:
\newline
(A)
g
(
x
)
=
10
x
−
82
g(x) = 10x - 82
g
(
x
)
=
10
x
−
82
\newline
(B)
g
(
x
)
=
10
x
+
98
g(x) = 10x + 98
g
(
x
)
=
10
x
+
98
\newline
(C)
g
(
x
)
=
10
x
−
1
g(x) = 10x - 1
g
(
x
)
=
10
x
−
1
\newline
(D)
g
(
x
)
=
10
x
+
17
g(x) = 10x + 17
g
(
x
)
=
10
x
+
17
Get tutor help
Previous
1
2