Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

/_1 and 
/_2 are supplementary angles. If 
m/_1=(2x-26)^(@) and 
m/_2=(5x-11)^(@), then find the measure of 
/_2.
Answer:

1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(2x26) \mathrm{m} \angle 1=(2 x-26)^{\circ} and m2=(5x11) \mathrm{m} \angle 2=(5 x-11)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:

Full solution

Q. 1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(2x26) \mathrm{m} \angle 1=(2 x-26)^{\circ} and m2=(5x11) \mathrm{m} \angle 2=(5 x-11)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:
  1. Set up equation: Supplementary angles add up to 180180 degrees. We can set up an equation using the expressions for m/angle 1m/\text{angle } 1 and m/angle 2m/\text{angle } 2.m/angle 1+m/angle 2=180m/\text{angle } 1 + m/\text{angle } 2 = 180 degrees(2x26)+(5x11)=180(2x - 26) + (5x - 11) = 180
  2. Combine like terms: Combine like terms on the left side of the equation.\newline2x+5x2611=1802x + 5x - 26 - 11 = 180\newline7x37=1807x - 37 = 180
  3. Isolate variable: Add 3737 to both sides of the equation to isolate the term with the variable xx.\newline7x37+37=180+377x - 37 + 37 = 180 + 37\newline7x=2177x = 217
  4. Solve for x: Divide both sides of the equation by 77 to solve for x.\newline7x7=2177\frac{7x}{7} = \frac{217}{7}\newlinex=31x = 31
  5. Find angle 22: Now that we have the value of xx, we can find the measure of angle 22 by substituting xx back into the expression for m/angle 2m/\text{angle } 2.
    m/angle 2=5x11m/\text{angle } 2 = 5x - 11
    m/angle 2=5(31)11m/\text{angle } 2 = 5(31) - 11
  6. Calculate angle 22: Calculate the value of m/angle 2m/\text{angle } 2.\newlinem/angle 2=15511m/\text{angle } 2 = 155 - 11\newlinem/angle 2=144m/\text{angle } 2 = 144 degrees

More problems from Transformations of functions