Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

/_1 and 
/_2 are complementary angles. If 
m/_1=(4x+2)^(@) and 
m/_2=(6x-12)^(@), then find the measure of 
/_2.
Answer:

1 \angle 1 and 2 \angle 2 are complementary angles. If m1=(4x+2) \mathrm{m} \angle 1=(4 x+2)^{\circ} and m2=(6x12) \mathrm{m} \angle 2=(6 x-12)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:

Full solution

Q. 1 \angle 1 and 2 \angle 2 are complementary angles. If m1=(4x+2) \mathrm{m} \angle 1=(4 x+2)^{\circ} and m2=(6x12) \mathrm{m} \angle 2=(6 x-12)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:
  1. Identify Relationship: Identify the relationship between complementary angles. Complementary angles add up to 9090^\circ.
  2. Set Up Equation: Set up the equation using the relationship between complementary angles.\newline(4x+2)+(6x12)=90(4x + 2)^\circ + (6x - 12)^\circ = 90^\circ
  3. Combine Like Terms: Combine like terms to simplify the equation.\newline4x+6x+212=904x + 6x + 2 - 12 = 90\newline10x10=9010x - 10 = 90
  4. Add 1010: Add 1010 to both sides of the equation to isolate the term with the variable.\newline10x10+10=90+1010x - 10 + 10 = 90 + 10\newline10x=10010x = 100
  5. Divide by 1010: Divide both sides of the equation by 1010 to solve for x.\newline10x10=10010\frac{10x}{10} = \frac{100}{10}\newlinex=10x = 10
  6. Substitute for xx: Substitute the value of xx back into the expression for the measure of the second angle, m/_2m/\_2.\newlinem/_2=(6x12)m/\_2 = (6x - 12)^\circ\newlinem/_2=(6(10)12)m/\_2 = (6(10) - 12)^\circ\newlinem/_2=(6012)m/\_2 = (60 - 12)^\circ\newlinem/_2=48m/\_2 = 48^\circ

More problems from Transformations of functions