Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

/_1 and 
/_2 are supplementary angles. If 
m/_1=(2x+15)^(@) and 
m/_2=(4x+9)^(@), then find the measure of 
/_1.
Answer:

1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(2x+15) \mathrm{m} \angle 1=(2 x+15)^{\circ} and m2=(4x+9) \mathrm{m} \angle 2=(4 x+9)^{\circ} , then find the measure of 1 \angle 1 .\newlineAnswer:

Full solution

Q. 1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(2x+15) \mathrm{m} \angle 1=(2 x+15)^{\circ} and m2=(4x+9) \mathrm{m} \angle 2=(4 x+9)^{\circ} , then find the measure of 1 \angle 1 .\newlineAnswer:
  1. Set up equation: Supplementary angles add up to 180180 degrees. We can set up an equation with the given expressions for m/angle 1m/\text{angle } 1 and m/angle 2m/\text{angle } 2 to find the value of xx.\newlinem/angle 1+m/angle 2=180°m/\text{angle } 1 + m/\text{angle } 2 = 180°\newline(2x+15)°+(4x+9)°=180°(2x + 15)° + (4x + 9)° = 180°
  2. Combine like terms: Combine like terms to simplify the equation.\newline2x+4x+15+9=1802x + 4x + 15 + 9 = 180\newline6x+24=1806x + 24 = 180
  3. Isolate x: Subtract 2424 from both sides to isolate the term with xx.\newline6x+2424=180246x + 24 - 24 = 180 - 24\newline6x=1566x = 156
  4. Solve for x: Divide both sides by 66 to solve for x.\newline6x6=1566\frac{6x}{6} = \frac{156}{6}\newlinex=26x = 26
  5. Find angle 11: Now that we have the value of xx, we can find the measure of angle 11 by substituting xx back into the expression for m/angle 1m/\text{angle } 1.
    m/angle 1=(2x+15)m/\text{angle } 1 = (2x + 15)^\circ
    m/angle 1=(2(26)+15)m/\text{angle } 1 = (2(26) + 15)^\circ
  6. Calculate angle 11: Calculate the value of m/angle 1m/\text{angle } 1.\newlinem/angle 1=(52+15)m/\text{angle } 1 = (52 + 15)^\circ\newlinem/angle 1=67m/\text{angle } 1 = 67^\circ

More problems from Transformations of functions