Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

/_1 and 
/_2 are supplementary angles. If 
m/_1=(2x+21)^(@) and 
m/_2=(3x+24)^(@), then find the measure of 
/_1.
Answer:

1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(2x+21) \mathrm{m} \angle 1=(2 x+21)^{\circ} and m2=(3x+24) \mathrm{m} \angle 2=(3 x+24)^{\circ} , then find the measure of 1 \angle 1 .\newlineAnswer:

Full solution

Q. 1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(2x+21) \mathrm{m} \angle 1=(2 x+21)^{\circ} and m2=(3x+24) \mathrm{m} \angle 2=(3 x+24)^{\circ} , then find the measure of 1 \angle 1 .\newlineAnswer:
  1. Set up equation: Supplementary angles add up to 180180 degrees. We can set up an equation with the given expressions for m/angle 1m/\text{angle } 1 and m/angle 2m/\text{angle } 2 to find the value of xx.\newlineCalculation: (2x+21)+(3x+24)=180(2x + 21) + (3x + 24) = 180
  2. Simplify equation: Combine like terms to simplify the equation.\newlineCalculation: 2x+3x+21+24=1802x + 3x + 21 + 24 = 180\newline5x+45=1805x + 45 = 180
  3. Isolate x: Subtract 4545 from both sides to isolate the term with xx.\newlineCalculation: 5x+4545=180455x + 45 - 45 = 180 - 45\newline5x=1355x = 135
  4. Solve for x: Divide both sides by 55 to solve for x.\newlineCalculation: 5x5=1355\frac{5x}{5} = \frac{135}{5}\newlinex=27x = 27
  5. Find angle measure: Now that we have the value of xx, we can find the measure of angle 11 by substituting xx back into the expression for m/angle 1m/\text{angle } 1.\newlineCalculation: m/angle 1=2x+21m/\text{angle } 1 = 2x + 21\newlinem/angle 1=2(27)+21m/\text{angle } 1 = 2(27) + 21\newlinem/angle 1=54+21m/\text{angle } 1 = 54 + 21\newlinem/angle 1=75m/\text{angle } 1 = 75 degrees

More problems from Transformations of functions