Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find g(x)g(x), where g(x)g(x) is the translation 99 units down of f(x)=10x+8f(x) = 10x + 8.\newlineChoices:\newline(A) g(x)=10x82g(x) = 10x - 82 \newline(B) g(x)=10x+98g(x) = 10x + 98 \newline(C) g(x)=10x1g(x) = 10x - 1\newline(D) g(x)=10x+17g(x) = 10x + 17

Full solution

Q. Find g(x)g(x), where g(x)g(x) is the translation 99 units down of f(x)=10x+8f(x) = 10x + 8.\newlineChoices:\newline(A) g(x)=10x82g(x) = 10x - 82 \newline(B) g(x)=10x+98g(x) = 10x + 98 \newline(C) g(x)=10x1g(x) = 10x - 1\newline(D) g(x)=10x+17g(x) = 10x + 17
  1. Understand transformation rule: Understand the transformation rule for translating a function vertically.\newlineTo translate a function kk units down, we subtract kk from the original function f(x)f(x).\newlineTransformation rule: g(x)=f(x)kg(x) = f(x) - k
  2. Apply rule to given function: Apply the transformation rule to translate f(x)=10x+8f(x) = 10x + 8, 99 units down.\newlineWe know that k=9k = 9 for this problem, so we substitute 99 for kk in the transformation rule.\newlineg(x)=f(x)9g(x) = f(x) - 9
  3. Substitute function into rule: Substitute the given function f(x)f(x) into the transformation rule to find g(x)g(x). We have f(x)=10x+8f(x) = 10x + 8, so we substitute this into g(x)=f(x)9g(x) = f(x) - 9. g(x)=(10x+8)9g(x) = (10x + 8) - 9
  4. Simplify expression for gg: Simplify the expression for g(x)g(x) by combining like terms.\newlineg(x)=10x+89g(x) = 10x + 8 - 9\newlineg(x)=10x1g(x) = 10x - 1

More problems from Transformations of functions