Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

/_1 and 
/_2 are supplementary angles. If 
m/_1=(x+7)^(@) and 
m/_2=(3x+25)^(@), then find the measure of 
/_1.
Answer:

1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(x+7) \mathrm{m} \angle 1=(x+7)^{\circ} and m2=(3x+25) \mathrm{m} \angle 2=(3 x+25)^{\circ} , then find the measure of 1 \angle 1 .\newlineAnswer:

Full solution

Q. 1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(x+7) \mathrm{m} \angle 1=(x+7)^{\circ} and m2=(3x+25) \mathrm{m} \angle 2=(3 x+25)^{\circ} , then find the measure of 1 \angle 1 .\newlineAnswer:
  1. Set up equation: Supplementary angles add up to 180180 degrees. We can set up an equation using the expressions for m/angle 1m/\text{angle } 1 and m/angle 2m/\text{angle } 2. \newlinem/angle 1+m/angle 2=180 degreesm/\text{angle } 1 + m/\text{angle } 2 = 180 \text{ degrees}\newline(x+7)+(3x+25)=180(x + 7) + (3x + 25) = 180
  2. Combine like terms: Combine like terms on the left side of the equation.\newlinex+7+3x+25=180x + 7 + 3x + 25 = 180\newline4x+32=1804x + 32 = 180
  3. Isolate x term: Subtract 3232 from both sides of the equation to isolate the term with xx.\newline4x+3232=180324x + 32 - 32 = 180 - 32\newline4x=1484x = 148
  4. Solve for x: Divide both sides of the equation by 44 to solve for x.\newline4x4=1484\frac{4x}{4} = \frac{148}{4}\newlinex=37x = 37
  5. Find angle measure: Now that we have the value of xx, we can find the measure of angle 11 by substituting xx back into the expression for m/angle 1m/\text{angle } 1.\newlinem/angle 1=(x+7)m/\text{angle } 1 = (x + 7)\newlinem/angle 1=(37+7)m/\text{angle } 1 = (37 + 7)\newlinem/angle 1=44m/\text{angle } 1 = 44 degrees

More problems from Transformations of functions