Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

/_1 and 
/_2 are complementary angles. If 
m/_1=(2x-13)^(@) and 
m/_2=(x-17)^(@), then find the measure of 
/_2.
Answer:

1 \angle 1 and 2 \angle 2 are complementary angles. If m1=(2x13) \mathrm{m} \angle 1=(2 x-13)^{\circ} and m2=(x17) \mathrm{m} \angle 2=(x-17)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:

Full solution

Q. 1 \angle 1 and 2 \angle 2 are complementary angles. If m1=(2x13) \mathrm{m} \angle 1=(2 x-13)^{\circ} and m2=(x17) \mathrm{m} \angle 2=(x-17)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:
  1. Set up equation: Complementary angles add up to 9090 degrees. We can set up an equation with the given expressions for m/angle 1m/\text{angle } 1 and m/angle 2m/\text{angle } 2 to find the value of xx.\newlineEquation: (2x13)+(x17)=90(2x - 13) + (x - 17) = 90
  2. Combine like terms: Combine like terms in the equation.\newline2x+x1317=902x + x - 13 - 17 = 90\newline3x30=903x - 30 = 90
  3. Isolate x: Add 3030 to both sides of the equation to isolate the term with xx.\newline3x30+30=90+303x - 30 + 30 = 90 + 30\newline3x=1203x = 120
  4. Solve for x: Divide both sides of the equation by 33 to solve for x.\newline3x3=1203\frac{3x}{3} = \frac{120}{3}\newlinex=40x = 40
  5. Find angle 22: Now that we have the value of xx, we can find the measure of angle 22 by substituting xx into the expression for m/angle 2m/\text{angle } 2.
    m/angle 2=(x17)m/\text{angle } 2 = (x - 17) degrees
    m/angle 2=(4017)m/\text{angle } 2 = (40 - 17) degrees
    m/angle 2=23m/\text{angle } 2 = 23 degrees

More problems from Transformations of functions