Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which equation has the same solution as 
x^(2)+15 x-8=-6 ?

(x-7.5)^(2)=-54.25

(x-7.5)^(2)=58.25

(x+7.5)^(2)=-54.25

(x+7.5)^(2)=58.25

Which equation has the same solution as x2+15x8=6 x^{2}+15 x-8=-6 ?\newline(x7.5)2=54.25 (x-7.5)^{2}=-54.25 \newline(x7.5)2=58.25 (x-7.5)^{2}=58.25 \newline(x+7.5)2=54.25 (x+7.5)^{2}=-54.25 \newline(x+7.5)2=58.25 (x+7.5)^{2}=58.25

Full solution

Q. Which equation has the same solution as x2+15x8=6 x^{2}+15 x-8=-6 ?\newline(x7.5)2=54.25 (x-7.5)^{2}=-54.25 \newline(x7.5)2=58.25 (x-7.5)^{2}=58.25 \newline(x+7.5)2=54.25 (x+7.5)^{2}=-54.25 \newline(x+7.5)2=58.25 (x+7.5)^{2}=58.25
  1. Add 66 to both sides: Add 66 to both sides of the given equation to set it equal to zero.\newlineWe start with the equation x2+15x8=6x^2 + 15x - 8 = -6 and add 66 to both sides to get:\newlinex2+15x8+6=0x^2 + 15x - 8 + 6 = 0\newlinex2+15x2=0x^2 + 15x - 2 = 0
  2. Complete the square: Complete the square to transform the equation into vertex form.\newlineTo complete the square, we need to find a value that, when added to both sides of the equation, makes the left side a perfect square trinomial. The value we need to add is (b/2)2(b/2)^2, where bb is the coefficient of xx.\newlineIn this case, b=15b = 15, so (b/2)2=(15/2)2=225/4(b/2)^2 = (15/2)^2 = 225/4.\newlineWe add 225/4225/4 to both sides of the equation:\newlinex2+15x+225/42=225/4x^2 + 15x + 225/4 - 2 = 225/4
  3. Convert to vertex form: Convert the left side into a perfect square and simplify the right side.\newlineWe rewrite the left side as a squared binomial and simplify the right side:\newline(x+152)22=2254(x + \frac{15}{2})^2 - 2 = \frac{225}{4}\newlineTo simplify the right side, we need to convert 2-2 into a fractions" target="_blank" class="backlink">fraction with the same denominator as 2254\frac{225}{4}, which is 44. So 2-2 is 84-\frac{8}{4}:\newline(x+152)284=2254(x + \frac{15}{2})^2 - \frac{8}{4} = \frac{225}{4}\newlineNow we combine the fractions on the right side:\newline(x+152)2=2254+84(x + \frac{15}{2})^2 = \frac{225}{4} + \frac{8}{4}\newline(x+152)2=2334(x + \frac{15}{2})^2 = \frac{233}{4}
  4. Convert to decimal: Convert the fraction on the right side to a decimal to match the answer choices.\newlineThe fraction 2334\frac{233}{4} is equal to 58.2558.25 when converted to a decimal:\newline(x+152)2=58.25(x + \frac{15}{2})^2 = 58.25
  5. Recognize and rewrite: Recognize that 152\frac{15}{2} is equal to 7.57.5 and rewrite the equation.\newlineWe can rewrite the equation as:\newline(x+7.5)2=58.25(x + 7.5)^2 = 58.25

More problems from Transformations of functions