Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

/_1 and 
/_2 are supplementary angles. If 
m/_1=(7x-2)^(@) and 
m/_2=(4x+28)^(@), then find the measure of 
/_1.
Answer:

1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(7x2) \mathrm{m} \angle 1=(7 x-2)^{\circ} and m2=(4x+28) \mathrm{m} \angle 2=(4 x+28)^{\circ} , then find the measure of 1 \angle 1 .\newlineAnswer:

Full solution

Q. 1 \angle 1 and 2 \angle 2 are supplementary angles. If m1=(7x2) \mathrm{m} \angle 1=(7 x-2)^{\circ} and m2=(4x+28) \mathrm{m} \angle 2=(4 x+28)^{\circ} , then find the measure of 1 \angle 1 .\newlineAnswer:
  1. Set up equation: Supplementary angles add up to 180180 degrees. We can set up an equation with the given expressions for m/angle 1m/\text{angle } 1 and m/angle 2m/\text{angle } 2 to find the value of xx.\newlinem/angle 1+m/angle 2=180m/\text{angle } 1 + m/\text{angle } 2 = 180 degrees\newline(7x2)+(4x+28)=180(7x - 2) + (4x + 28) = 180
  2. Combine like terms: Combine like terms to simplify the equation.\newline7x+4x2+28=1807x + 4x - 2 + 28 = 180\newline11x+26=18011x + 26 = 180
  3. Isolate xx: Subtract 2626 from both sides to isolate the term with xx.11x+2626=1802611x + 26 - 26 = 180 - 2611x=15411x = 154
  4. Solve for x: Divide both sides by 1111 to solve for x.\newline11x11=15411\frac{11x}{11} = \frac{154}{11}\newlinex=14x = 14
  5. Find angle 11: Now that we have the value of xx, we can find the measure of angle 11 by substituting xx back into the expression for m/angle 1m/\text{angle } 1.\newlinem/angle 1=7x2m/\text{angle } 1 = 7x - 2\newlinem/angle 1=7(14)2m/\text{angle } 1 = 7(14) - 2
  6. Calculate angle 11: Calculate the value of m/angle 1m/\text{angle } 1.\newlinem/angle 1=982m/\text{angle } 1 = 98 - 2\newlinem/angle 1=96m/\text{angle } 1 = 96 degrees

More problems from Transformations of functions