Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

/_1 and 
/_2 are complementary angles. If 
m/_1=(2x+1)^(@) and 
m/_2=(4x+11)^(@), then find the measure of 
/_2.
Answer:

1 \angle 1 and 2 \angle 2 are complementary angles. If m1=(2x+1) \mathrm{m} \angle 1=(2 x+1)^{\circ} and m2=(4x+11) \mathrm{m} \angle 2=(4 x+11)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:

Full solution

Q. 1 \angle 1 and 2 \angle 2 are complementary angles. If m1=(2x+1) \mathrm{m} \angle 1=(2 x+1)^{\circ} and m2=(4x+11) \mathrm{m} \angle 2=(4 x+11)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:
  1. Define Complementary Angles: Understand the definition of complementary angles. Complementary angles are two angles whose measures add up to 9090^\circ.
  2. Set Up Equation: Set up the equation based on the definition of complementary angles.\newlineSince angle 11 and angle 22 are complementary, we have:\newlinem/angle 1+m/angle 2=90m/\text{angle 1} + m/\text{angle 2} = 90 degrees\newlineSubstitute the given expressions for m/angle 1m/\text{angle 1} and m/angle 2m/\text{angle 2}:\newline(2x+1)+(4x+11)=90(2x + 1) + (4x + 11) = 90
  3. Combine Like Terms: Combine like terms in the equation.\newline2x+4x+1+11=902x + 4x + 1 + 11 = 90\newline6x+12=906x + 12 = 90
  4. Solve for x: Solve for x.\newlineSubtract 1212 from both sides of the equation:\newline6x+1212=90126x + 12 - 12 = 90 - 12\newline6x=786x = 78\newlineDivide both sides by 66:\newlinex=786x = \frac{78}{6}\newlinex=13x = 13
  5. Find Angle 22: Find the measure of angle 22 using the value of xx. Substitute x=13x = 13 into the expression for m/angle 2m/\text{angle } 2: m/angle 2=4x+11m/\text{angle } 2 = 4x + 11 m/angle 2=4(13)+11m/\text{angle } 2 = 4(13) + 11 m/angle 2=52+11m/\text{angle } 2 = 52 + 11 m/angle 2=63m/\text{angle } 2 = 63 degrees

More problems from Transformations of functions